K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow 2(x^2+y^2+2xy)+x^2+y^2+2x-2y+2=0\)

\(\Leftrightarrow 2(x^2+y^2+2xy)+(x^2+2x+1)+(y^2-2y+1)=0\)

\(\Leftrightarrow 2(x+y)^2+(x+1)^2+(y-1)^2=0\)

Ta thấy:

\(\left\{\begin{matrix} 2(x+y)^2\geq 0\\ (x+1)^2=0\\ (y-1)^2\geq 0\end{matrix}\right.\). Do đó để tổng của chúng bằng $0$ thì:

\((x+y)^2=(x+1)^2=(y-1)^2=0\)

\(\Rightarrow x=-1; y=1\)

Vậy.........

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

30 tháng 6 2019

1) x2 + 7y2 - 4xy - 2x - 2y + 4 = 0

\(\Leftrightarrow\)[ x2 - 2x.( 2y + 1 ) + 4y2 + 4y +1 ] - 4y2 - 4y - 1 + 7y- 2y +4 = 0

\(\Leftrightarrow\) [ x2 - 2x.( 2y +1 ) + ( 2y +1 )2 ] + 3y2 - 6y +3 = 0

\(\Leftrightarrow\) ( x - 2y - 1 )2 + 3.( y2 - 2y + 1 ) = 0

\(\Leftrightarrow\)( x - 2y - 1 )2 + 3.( y - 1 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2y-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-2y-1=0\\y-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=2y+1\\y=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Vậy x = 3 , y = 1 thì x2 + 7y2 - 4xy - 2x - 2y + 4 = 0

2) 11x2 + y2 - 6xy - 14x + 2y +9 = 0

\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + 9x2 - 6x +1 ] + 2x2 - 8x + 8 = 0

\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + ( 3x - 1 )2 ] + 2.( x2 - 4x + 4 ) = 0

\(\Leftrightarrow\)( y - 3x + 1 )2 + 2.( x - 2 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(y-3x+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y-3x+1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=3x-1\\x=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=5\\x=2\end{cases}}\)

Vậy x = 2 , y = 5 thì 11x2 + y2 - 6xy - 14x + 2y + 9 = 0

30 tháng 6 2019

Cảm ơn bạn

2 tháng 8 2019

23 tháng 10 2019

Đáp án D

19 tháng 3 2021

Toán lớp 0 ?????  \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi

NV
25 tháng 12 2022

\(8x^2+14xy+8y^2+2x-2y+2=0\)

\(\Leftrightarrow7\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

Do \(\left\{{}\begin{matrix}7\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ; \(\forall x;y\)

Nên \(7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0;\forall x;y\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)