Tìm giá trị nhỏ nhất của biểu thức sau :
A = | x - 2 | - \(\frac{9}{10}\)Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có:
\(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\)
Vậy giá trị nhỏ nhất của biểu thức đã cho là 10 khi \(x=\pm3;y=2\)
A=|x-9|+10
Ta có |x-9| >= 0 với mọi x
=> |x-9|+10 >= 0+10
hay A >= 10
Dấu "=" xảy ra <=> |x-9|=0
<=> x-9=0
<=> x=9
Vậy Min A=10 đạt được khi x=9
A = |x - 9| + 10
Ta có: \(\left|x-9\right|\ge0\)với \(\forall x\)
\(\Rightarrow\left|x-9\right|+10\ge10\)
Dấu "=" xảy ra khi:
|x - 9| = 0
=> x - 9 = 0
=> x = 9
Vậy AMIN = 10 khi x = 9
\(\left|x+1,5\right|\ge0\forall x\)
Dấu " = " xảy ra khi
| x + 1,5 | = 0
x = -1,5
Vậy MinA = 0 <=> x = -1,5
b)
\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)
Dấu " = " xảy ra khi
| x - 2 | = 0
x = 2
Vậy MinA = \(\frac{9}{10}\)<=> x = 2
\(-\left|2x-1\right|\le0\forall x\)
Dấu " = " xảy ra khi :
- | 2x - 1 | = 0
=> x = \(\frac{1}{2}\)
Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)
b)
\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)
Dấu " = " xảy ra khi :
- | 5x - 3 | = 0
=> x = \(\frac{3}{5}\)
Vậy MaxB = 4 <=> x = \(\frac{3}{5}\)
Study well
\(A=|x-9|+10\)
Vì \(|x-9|\ge0\)
\(\Rightarrow|x-9|+10\ge10\)
\(\Rightarrow A_{min}=10\)\(\Leftrightarrow|x-9|=0\Rightarrow x-9=0\)
\(\Rightarrow x=9\)
Ta có |x - 2| \(\ge0\forall x\)
=> A = |x - 2| \(-\frac{9}{10}\ge-\frac{9}{10}\)
=> Min A = -9/10
Dấu "=" xảy ra <=> x - 2 = 0
<=> x = 2
Vậy Min A = -9/10 <=> x = 2
\(A=\left|x-2\right|-\frac{9}{10}\text{ nhỏ nhất}\)
\(\Leftrightarrow\left|x-2\right|\text{nhỏ nhất}\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
\(\text{Vậy GTNN của }A=\left|x-2\right|-\frac{9}{10}\text{ là }-\frac{9}{10}\Leftrightarrow x=2\)