K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Bạn phải nói rõ điều kiện của dãy ra chứ? Cấp số cộng? Cấp số nhân?

6 tháng 5 2017

Đáp án A

11 tháng 2 2019

Đáp án C.

ĐK x 2 + x > 0 ⇔ x ∈ − ∞ ; − 1 ∪ 0 ; + ∞ .

31 tháng 7 2018

Chọn C.

ĐK: 

19 tháng 10 2021

a)x≠0

b)x≠1

19 tháng 10 2021

a: ĐKXĐ: \(x\notin\left\{4;-4\right\}\)

b: ĐKXĐ: \(x\ne1\)

9 tháng 6 2017

Cho hàm số  y   =   f ( x ) xác định trên tập D. Khi đó:

- Hàm số đồng biến trên  D   x 1 ;   x 2     D ;   x 1   >   x 2     f ( x 1 )   >   f ( x 2 ) .

- Hàm số nghịch biến trên  D   x 1 ;   x 2     D ;   x 1   >   x 2     f ( x 1 )   <   f ( x 2 ) .

Đáp án cần chọn là: C

1 tháng 9 2017

Đáp án A

Cho hàm số y = f(x) xác định trên tập D. Khi đó:

• Hàm số đồng biến trên D ⇔ ∀  x 1 ,  x 2  ∈ D : x 1   <  x 2  ⇒ f( x 1 ) < f( x 2 )

• Hàm số nghịch biến trên D ⇔ ∀  x 1 ,  x 2  ∈ D : x 1   <  x 2  ⇒ f( x 1 ) > f( x 2 )

1 tháng 4 2018

Đáp án A

Cho hàm số y = f(x) xác định trên tập D. Khi đó:

• Hàm số đồng biến trên D ⇔ ∀  x 1 ,  x 2  ∈ D :  x 1  <  x 2  ⇒ f( x 1 ) < f( x 2 )

• Hàm số nghịch biến trên D ⇔ ∀  x 1 ,  x 2  ∈ D :  x 1  <  x 2  ⇒ f( x 1 ) > f( x 2 )

26 tháng 4 2019

 

Cho hàm số  xác định trên tập D. Khi đó:

- Hàm số đồng biến trên  D   x 1 ;   x 2     D ;   x 1   <   x 2     f ( x 1 )   <   f ( x 2 ) .

- Hàm số nghịch biến trên  D   x 1 ;   x 2     D ;   x 1   <   x 2     f ( x 1 )   >   f ( x 2 ) .

Đáp án cần chọn là: A

 

6 tháng 2 2019

a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)

                               \(\Leftrightarrow m>3\)

Có \(\Delta=9>0\)

Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)

                                                \(x_2=\frac{2m-3+3}{2}=m\)                        (Do m - 3 < m nên x1  < x2 thỏa mãn đề bài)

Vì \(1< x_1< x_2< 6\)

\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)

\(\Leftrightarrow4< m< 6\)(Thỏa mãn)

c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)

                        \(=m^2-6m+9+m^2\)

                         \(=2m^2-6m+9\)

                         \(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)

                        \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(2m-3\right)^2-2m^2+6m\)

                     \(=4m^2-12m+9-2m^2+6m\)

                     \(=2m^2-6m+9\)

                       \(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

Dấu "=" khi \(m=\frac{3}{2}\)