K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Đáp án A

Cho hàm số y = f(x) xác định trên tập D. Khi đó:

• Hàm số đồng biến trên D ⇔ ∀  x 1 ,  x 2  ∈ D : x 1   <  x 2  ⇒ f( x 1 ) < f( x 2 )

• Hàm số nghịch biến trên D ⇔ ∀  x 1 ,  x 2  ∈ D : x 1   <  x 2  ⇒ f( x 1 ) > f( x 2 )

21 tháng 5 2019

Với \(x_1;x_2\)bất kì thuộc \(ℝ\)và \(x_1< x_2\) Ta có :

\(f\left(x_1\right)=\frac{1}{2}x_1+1\)

\(f\left(x_2\right)=\frac{1}{2}x_2+1\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=\frac{1}{2}\left(x_1-x_2\right)< 0\)

(Vì \(x_1< x_2\Rightarrow x_1-x_2< 0\))

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vậy hàm số đồng biến trên \(ℝ\)

11 tháng 1 2021

a, Để  y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1

y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1

 y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1

b, f(1) = 2 

\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2

\(\Leftrightarrow\) m - 1 + 2m - 3 = 2

\(\Leftrightarrow\) m = 2

Với m = 2 ta có:

f(2) = (2 - 1).2 + 2.2 - 3 = 3

Vậy f(2) = 3

c, f(-3) = 0

\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0

\(\Leftrightarrow\) 2m = 3

\(\Leftrightarrow\) m = 1,5

Vì m > 1 (1,5 > 1)

\(\Rightarrow\) m - 1 > 0

hay a > 0

Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R

Chúc bn học tốt!

a) 

+) Hàm số đồng biến \(\Leftrightarrow m>1\)

+) Hàm số nghịch biến \(\Leftrightarrow m< 1\)

b) Ta có: \(f\left(1\right)=2\) 

\(\Rightarrow m-1+2m+3=2\) \(\Leftrightarrow m=0\)

\(\Rightarrow f\left(2\right)=\left(0-1\right)\cdot2+2\cdot0-3=-5\)

c) Hàm số là hàm hằng

 

22 tháng 4 2016

ai làm có thưởng 2điem

a: f(x)=3x^2

a=3>0

=>Hàm số đồng biến khi x>0 và nghịch biến khi x<0

b: f(1)=f(-1)=3*1^2=3

f(2)=3*2^2=12

f(-4)=3*(-4)^2=48

c: f(x)=48

=>x^2=48/3=16

=>x=4 hoặc x=-4

d; loading...

20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.

m^2+1>=1>0

=>Hàm số luôn đồng biến với mọi m

26 tháng 3 2023