K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Bạn tụ vẽ hình nha

a, Theo tính chất 2 tiếp tuyến cắt nhau, ta có: CB = CD

mà OB = OD = R

⇒ BD là đường trung trực của OC

⇒ OC ⊥ BD (đpcm)

b, Gọi I là trung điểm của OC thì:

ΔOBC vuông tại B có BI là trung tuyến ứng với cạnh huyền

⇒ BI = IO = IC

ΔODC vuông tại D có DI là trung tuyến ứng với cạnh huyền

⇒ DI = IO = IC

⇒BI = DI = IO = IC

⇒ 4 điểm O,B,C,D cùng thuộc một đường tròn

c,\(\widehat{DMC}\) là góc ngoài tại M của Δ DAM

\(\Rightarrow\widehat{DMC}=\widehat{ADM}+\widehat{DAM}\)

\(\widehat{DAM}=\widehat{MDC}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau)

\(\Rightarrow\widehat{ADM}+\widehat{DAM}=\widehat{ADM}+\widehat{MDC}\)

\(\Rightarrow\widehat{DMC}=\widehat{CDA}\)

30 tháng 11 2021

2: Xét tứ giác OBCD có 

\(\widehat{OBC}+\widehat{ODC}=180^0\)

Do đó: OBCD là tứ giác nội tiếp

hay O,B,C,D cùng thuộc một đường tròn

a) Xét (O) có

ΔABC nội tiếp đường tròn(A,B,C∈(O))

AB là đường kính

Do đó: ΔABC vuông tại C(Định lí)

b) Xét ΔABC vuông tại C có

\(\sin\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)

hay \(\widehat{ABC}=30^0\)

Vậy: \(\widehat{ABC}=30^0\)

c)

Xét ΔOBC có OB=OC(=R)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

Xét ΔOBC cân tại O có OM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên OM là đường phân giác ứng với cạnh BC(Định lí tam giác cân)

\(\widehat{BOM}=\widehat{COM}\)

hay \(\widehat{BON}=\widehat{CON}\)

Xét ΔBON và ΔCON có 

OB=OC(=R)

\(\widehat{BON}=\widehat{CON}\)(cmt)

ON chung

Do đó: ΔBON=ΔCON(c-g-c)

\(\widehat{OBN}=\widehat{OCN}\)(hai góc tương ứng)

mà \(\widehat{OBN}=90^0\)(NB⊥OB tại B)

nên \(\widehat{OCN}=90^0\)

hay NC⊥OC tại C

Xét (O) có 

OC là bán kính

NC⊥OC tại C(cmt)

Do đó: NC là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

26 tháng 12 2020

a) Xét (O) có 

ΔABC nội tiếp đường tròn(A,B,C∈(O))

AB là đường kính

Do đó: ΔABC vuông tại C(Định lí)

b) Áp dụng định lí Pytago vào ΔABC vuông tại C, ta được:

\(AB^2=BC^2+AC^2\)

\(\Leftrightarrow BC^2=AB^2-AC^2=\left(2\cdot R\right)^2-R^2=3\cdot R^2\)

hay \(BC=R\cdot\sqrt{3}\)(đvđd)

Xét ΔABC vuông tại C có 

\(\sin\widehat{A}=\dfrac{BC}{AB}=\dfrac{R\sqrt{3}}{2R}=\dfrac{\sqrt{3}}{2}\)

hay \(\widehat{A}=60^0\)

Xét ΔABC vuông tại C có

\(\widehat{A}+\widehat{B}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{B}=30^0\)

Vậy: \(BC=R\cdot\sqrt{3}\)(đvđd); \(\widehat{A}=60^0\)\(\widehat{B}=30^0\)

23 tháng 10 2023

a: Gọi E là trung điểm của OA

=>E là tâm đường tròn đường kính OA

Xét (E) có

ΔOBA nội tiếp

OA là đường kính

Do đó: ΔOBA vuông tại B

=>AB vuông góc OB tại B

=>AB là tiếp tuyến của (O)

Xét (O) có

ΔOCA nội tiếp

OA là đường kính

Do đó: ΔOCA vuông tại C

=>AC vuông góc với CO tại C

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCK nội tiếp

BK là đường kính

Do đó: ΔBCK vuông tại C

=>BC vuông góc CK tại C

Xét (E) có

ΔBCI nội tiếp

BI là đường kính

Do đó: ΔBCI vuông tại C

=>BC vuông góc CI tại C

\(\widehat{KCI}=\widehat{KCB}+\widehat{ICB}\)

\(=90^0+90^0\)

\(=180^0\)

=>K,C,I thẳng hàng

Xét (B;BC) có

BC là bán kính

KI vuông góc với BC tại C

Do đó: KI là tiếp tuyến của (B;BC)

6 tháng 11 2024

Hình 

 

25 tháng 3 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác COD cân tại O có OH là đường cao

⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)

Xét ΔMCO và ΔMOD có:

CO = OD

∠(COM) = ∠(MOD)

MO là cạnh chung

⇒ ΔMCO = ΔMOD (c.g.c)

⇒ ∠(MCO) = ∠(MDO)

∠(MCO) =  90 0 nên ∠(MDO) = 90 0

⇒ MD là tiếp tuyến của (O)

9 tháng 4 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Ta có: OM = OA + AM = R + R = 2R

Xét tam giác MCO vuông tại C, CH là đường cao có:

MO 2 = MC 2 + OC 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

CH.OM = CM.CO

Đề kiểm tra Toán 9 | Đề thi Toán 9

Lại có: CD = 2CH ⇒ CD = R 3

Tam giác CDE nội tiếp (O) có CE là đường kính nên ΔCDE vuông tại D

Theo định lí Py ta go ta có:

CE 2 = CD 2 + DE 2

Đề kiểm tra Toán 9 | Đề thi Toán 9