Cho \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\).Tính M=\(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+ab+b^2}\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}\)
Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}\\\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\end{matrix}\right.\)
Cộng vế theo vế của bất đẳng thức:
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Tiếp tục áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
Cmtt\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\\\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\end{matrix}\right.\)
Cộng vế theo vế
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\\ \ge\dfrac{2}{3}\left(a-\dfrac{b}{2}+b-\dfrac{c}{2}+c-\dfrac{a}{2}\right)=\dfrac{2}{3}\left(a+b+c-\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{3}\)
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự và cộng lại ta sẽ có đpcm
Bài 1:
Từ \(a+b+c=0\) ta có:
\(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)
\(=\frac{a^2}{(-b-c)^2-b^2-c^2}+\frac{b^2}{(-c-a)^2-c^2-a^2}+\frac{c^2}{(-b-a)^2-b^2-a^2}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Lại có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)
\(=-c^3+3abc+c^3=3abc\)
Do đó \(B=\frac{3abc}{2abc}=\frac{3}{2}\)
Bài 2:
Lấy P-Q ta có:
\(P-Q=\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)\)
\(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)
\(P-Q=\frac{(a-b)(a^2+ab+b^2)}{a^2+ab+b^2}+\frac{(b-c)(b^2+bc+c^2)}{b^2+bc+c^2}+\frac{(c-a)(c^2+ac+a^2)}{c^2+ac+a^2}\)
\(P-Q=(a-b)+(b-c)+(c-a)=0\Rightarrow P=Q\)
Ta có đpcm.
a) Ta có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)
\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)
Đẳng thức xảy ra khi $a=b=c.$
b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),
đúng.
Đẳng thức xảy ra khi $a=b=c.$
c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)
Đẳng thức xảy ra khi $x=0.$
d) Xét hiệu hai vế đi bạn.
Bài 3:
Ta có: \(a^2+b^2+c^2=3\ge ab+bc+ca\) ( tự cm bđt nha )
Áp dụng bất đẳng thức Schwarz ta có:
\(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}=\dfrac{a^4}{ab+bc}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Dấu " = " khi a = b = c = 1
Bài 4:
Ta có: \(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
( BĐT AM - GM )
Tương tự \(\Rightarrow\dfrac{b^3}{c^2+a^2}\ge b-\dfrac{c}{2}\)
\(\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\)
\(\Rightarrow VT\ge\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{2}\)
Dấu " = " khi a = b = c
Tiếp sức cho Tú đệ
Bài 1: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\dfrac{a^3+b^3}{ab}\ge\dfrac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge VP."="\Leftrightarrow a=b=c\)
Bài 2: Holder:
\(\left(\dfrac{a^4}{bc^2}+\dfrac{b^4}{ca^2}+\dfrac{c^4}{ab^2}\right)\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\left(c+a+b\right)\ge\left(a+b+c\right)^3\)
Cần chứng minh \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)
AM-GM: \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}\cdot\dfrac{ca}{b}}=2c\)
Tương tự rồi cộng theo vế:
\("=" \Leftrightarrow a=b=c\)
\(P\ge\dfrac{3abc}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{c^2+a^2}{b^2+\dfrac{c^2+a^2}{2}}\)
\(P\ge\dfrac{3}{2}+2\left(\dfrac{a^2+b^2}{a^2+c^2+b^2+c^2}+\dfrac{b^2+c^2}{a^2+b^2+a^2+c^2}+\dfrac{a^2+c^2}{a^2+b^2+b^2+c^2}\right)\)
Đặt \(\left(a^2+b^2;b^2+c^2;a^2+c^2\right)=\left(x;y;z\right)\)
\(\Rightarrow P\ge\dfrac{3}{2}+2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{3}{2}+2\left(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{yz+xy}+\dfrac{z^2}{xz+yz}\right)\)
\(P\ge\dfrac{3}{2}+\dfrac{2\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3}{2}+\dfrac{3\left(xy+yz+zx\right)}{xy+yz+zx}=3+\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)
\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)
\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)
\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ac+a^2}\)
\(=\left(\frac{a^3+b^3}{a^2+ab+b^2}-b+a\right)+\left(\frac{b^3+c^3}{b^2+bc+c^2}-c+b\right)+\left(\frac{c^3+a^3}{c^2+ac+a^2}-a+c\right)\)
\(=2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}\right)\)
\(=2....\) ( đề thiếu )