Tìm chữ số a , b để :
a , \(\overline{14a}\)\(⋮3\)
b , \(\overline{a48b}\)\(⋮2,3,5,9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
Ta có số: \(\overline{\cdot72\cdot}\) số này chia hết cho 2 và 5 nên số này phải có chữ số tận cùng là 0
Khi \(\cdot=0\) thì \(720\) ⋮ 3 và 9 vậy khi \(\cdot=0\) thì:
\(\overline{\cdot72\cdot}\) ⋮ 2,3,5,9
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Ta có :
7a4 + 5b1 = 704 + 10a + 501 + 10b
= ( 704 + 501 ) + ( 10a + 10b )
= 1205 + 10( a + b )
Vì 1205 chia 9 dư 8
=> 10( a + b ) chia 9 dư 1
=> a + b chia 9 dư 1 do ( 10 , 9 ) = 1
Mà a - b = 6
=> a = b + 6 => 10( a + b ) = 10 . ( b + 6 + b )
= 10 . ( 2b + 6 )
= 10 . [ 2 . ( b + 3 )]
= 20 . ( b + 3 )
=> b + 3 chia 9 dư 1 do ( 20 , 9 ) = 1
=> b = 7 ( do b là chữ số )
=> a = b + 6 = 13 ( vô lý )
Vậy không có chữ số a và b thỏa mãn yêu cầu đề bài
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)