cho a,b,c dương thỏa mãn a+b+c =1
cm: a/√8a+bc + b/√8b+ca + c/√8c+ab ≤ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunyakovsky, ta có:
\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)
Áp dụng BĐT Cauchy, ta có:
\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)
Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)
Đẳng thức xảy ra khi a = b = c = 1.
Vậy GTNN của A là 1 (khi a = b = c = 1).
Ta chứng minh bất đẳng thức phụ
\(\frac{1}{8x^2+1}\ge\frac{2}{x+1}-1\)
\(\Leftrightarrow4x^3-4x^2+x\ge0\)
\(\Leftrightarrow x\left(2x-1\right)^2\ge0\)(đúng)
Áp dụng vào bài toán ta được
\(\frac{1}{8a^2+1}+\frac{1}{8b^2+1}+\frac{1}{8c^2+1}\ge-1+\frac{2}{a+1}-1+\frac{2}{b+1}-1+\frac{2}{c+1}\)
\(=-3+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=-3+4=1\)
Ta có: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
\(\Rightarrow3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=1\)
\(\Rightarrow\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)
Xét BĐT \(\Sigma_{cyc}\frac{1}{8a^2+1}\ge1\Leftrightarrow3-\Sigma_{cyc}\frac{1}{8a^2+1}\le2\)
\(\Leftrightarrow\Sigma_{cyc}\frac{8a^2}{8a^2+1}\le2\Leftrightarrow\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le2\)
Xét BĐT phụ: \(\frac{4x^2}{8x^2+1}\le\frac{x}{x+1}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{x\left(2x-1\right)^2}{\left(x+1\right)\left(8x^2+1\right)}\)(đúng với mọi x thực dương)
Áp dụng, ta có: \(\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le\text{}\Sigma_{cyc}\frac{a}{a+1}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Ta có \(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(1-2a+4a^2\right)}\le\frac{1+2a+1-2a+4a^2}{2}=1+2a^2\)(BĐT AM-GM)
Tương tự cho \(\sqrt{1+8b^2};\sqrt{1+8c^2}\)ta được \(P\ge\frac{1}{1+2a^2}+\frac{1}{1+2b^2}+\frac{1}{1+2c^2}\)
Mặt khác \(\frac{1}{1+2a^2}=\frac{1}{1+2a^2}+\frac{1+2a^2}{9}-\frac{1+2a^2}{9}\ge2\sqrt{\frac{1}{1+2a^2}\cdot\frac{1+2a^2}{9}}-\frac{2}{9}a^2-\frac{1}{9}=\frac{5-2a^2}{9}\)
Khi đó: \(P\ge\frac{5-2a^2}{9}-\frac{5-2b^2}{9}-\frac{5-2c^2}{9}\) \(=\frac{15-2\left(a^2+b^2+c^2\right)}{9}=\frac{15-2\cdot3}{9}=1\)
Vậy Min P=1
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=3\\1+2a=1-2a+4a^2\\\frac{1}{1+2a^2}=\frac{1+2a^2}{9}\end{cases}}\)và vai trò a,b,c như nhau hay (a,b,c)=(1,1,1)
Hướng dẫn.
Bạn chứng minh bất đẳng thức $\dfrac{1}{\sqrt{1+8a^3}} \geqslant \dfrac{5}{9}-\dfrac{2}{9}a^2$ rồi cộng lại là xong.
Theo giả thiết, ta có: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge1\)\(\Leftrightarrow1-\frac{1}{a+b+1}+1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}\le2\)\(\Leftrightarrow\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\le2\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{\left(a+b+b+c+c+a\right)^2}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)}\)
Từ đó suy ra \(\frac{\left(a+b+b+c+c+a\right)^2}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)}\le2\) \(\Leftrightarrow\left(a+b+b+c+c+a\right)^2\) \(\le2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2+2\left(a+b+c\right)\right]\)
\(\Leftrightarrow a+b+c\ge ab+bc+ca\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Với mọi số thực dương a;b;c ta có BĐT:
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Tương tự, ta có:
\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)
\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)
Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)