Rút gọn biểu thức:
2,5.\(5^{n-3}.10+5^n-6.5^{n-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(5^n.2,5-30.5^n-6.5^n-1=5^n.\left(25-30-6\right)-1=5^n.\left(-11\right)-1\)-1
\(=25.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}\)
\(=5^{n-1}+5^n-6.5^{n-1}\)
\(=5^{n-1}\left(1-6\right)+5^n=-5.5^{n-1}+5^n=-5^{n-1+1}+5^n=-5^n+5^n=0\)
a) 10n + 1 - 6.10n
= 10n . 10 - 6 . 10n
= 10n . (10 - 6)
= 10n . 4
b) 2n + 3 + 2n + 2 - 2n + 1 + 2n
= 2n . 23 + 2n . 22 - 2n . 2 + 2n . 1
= 2n . (8 + 4 - 2 + 1)
= 2n . 11
a) \(10^n+1-6\cdot10^n=\left(1-6\right)10^n+1=-5\cdot10^n+1\)
b) \(90\cdot10^n-10^2-2+10^n+1=\left(90-1+1\right)\cdot10^n-2+1=90\cdot10^n-1\)
c) \(2,5\cdot56^n-3=\frac{5}{2}\cdot56^n-3\)
\(d,2,5.5^{n-3}.2.5+5^n-6.5^{n-1}=5.5.5^{n-3}+5^n-6.5^{n-1}=5^2.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}=5^{n-1}\left(1+5-6\right)=5^{n-1}.0=0\)
a, \(10^{n+1}-6.10^n=10^n\left(10-6\right)=4.10^n\)
b. \(2^{n+3}+2^{n+2}-2^{n+1}+2^n=2^n\left(2^3+2^2-2+1\right)=2^n\left(8+4-2+1\right)=11.2^n\)
\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
=25.\(5^n\):3+\(5^n\)\(-\)6.\(5^n\):5
=\(\dfrac{25}{3}\).\(5^n\)+\(5^n\)\(-\)\(\dfrac{6}{5}\).\(5^n\)
=\(5^n\).\(\left(\dfrac{25}{3}+1-\dfrac{6}{5}\right)\)
=\(5^n\).\(\dfrac{158}{15}\)