Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(10^{n+1}-6.10^n\)
\(=10^n.10-6.19^n\)
\(=10^n.\left(10-6\right)\)
\(=10^n.4\)
b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)
\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)
\(=2^n.\left(2^3+2^2-2+1\right)\)
\(=2^n.11\)
c) \(90.10^k-10^{k+2}+10^{k+1}\)
\(=90.10^k-10^k.10^2+10^k.10\)
\(=10^k.\left(90-10^2+10\right)\)
\(=0\)
d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)
\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
=25.\(5^n\):3+\(5^n\)\(-\)6.\(5^n\):5
=\(\dfrac{25}{3}\).\(5^n\)+\(5^n\)\(-\)\(\dfrac{6}{5}\).\(5^n\)
=\(5^n\).\(\left(\dfrac{25}{3}+1-\dfrac{6}{5}\right)\)
=\(5^n\).\(\dfrac{158}{15}\)
a) Ta có:
\(90.10^k-10^{k+2}+10^{k+1}\)
\(=90.10^k-10^k.10^2+10^k.10\)
\(=10^k\left(90-10^2+10\right)\)
\(=10^k.0=0\)
b) Ta có:
\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
\(=2,5.10.5^{n-3}+5^n-6.5^{n-1}\)
\(=5.5.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^2.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}\)
\(=5^{n-1}\left(1+5-6\right)\)
\(=5^{n-1}.0=0\)
a) Rút gọn biểu thức:
\(90\times10^k-10^{k+2}+10^{k+1}=90\times10^k-10^k\times10^2+10^k\times10\) \(=10^k\times\left(90-10^2+10\right)\) \(=10^k\times\left(90-100+10\right)\) \(=10^k\times0=0\)
b) Rút gọn biểu thức:
\(2,5\times5^{n-3}\times10+5^n-6\times5^{n-1}=2,5\times\dfrac{5^n}{5^3}\times10+5^n-6\times\dfrac{5^n}{5}\) \(=2,5\times\dfrac{5^n}{125}\times10+5^n-\dfrac{6}{5}\times5^n\) \(=0,2\times5^n+5^n-1,2\times5^n\) \(=5^n\times\left(0,2+1-1,2\right)=5^n\times0=0\)
\(M=\frac{131.145+100}{45-132.145}\)
\(=\frac{131-\frac{100}{145}}{\frac{45}{145}-132}\)
\(=\frac{131-\frac{20}{29}}{\frac{9}{29}-132}\)
\(=\frac{131\frac{-20}{29}}{-132\frac{9}{29}}\)
\(1/\)
Để \(\frac{21n+4}{14n+3}\)là phân số tối giản
Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)
Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)
Ta có:
\(21n+4⋮a\)
\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)
\(14n+3⋮a\)
\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)
Từ (1) và (2) suy ra:
\((42n+9)-(42n+8)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a=1\)hoặc\(a=-1\)
\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản
\(B=\frac{\left[\frac{2}{3}\right]^3\cdot\left[-\frac{3}{4}\right]^2\cdot\left[-1\right]^5}{\left[\frac{2}{5}\right]^2\cdot\left[-\frac{5}{12}\right]^3}\)
\(=\frac{\frac{2^3}{3^3}\cdot\frac{\left[-3\right]^2}{4^2}\cdot\left[-1\right]}{\frac{2^2}{5^2}\cdot\frac{\left[-5\right]^3}{12^3}}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\cdot3\right]^3}}\)
\(=\frac{\frac{1}{3}\cdot\frac{1}{2}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\right]^3\cdot3^3}}\)
\(=\frac{\frac{1\cdot1\cdot\left[-1\right]}{3\cdot2\cdot1}}{\frac{4}{25}\cdot\frac{-125}{4^3\cdot3^3}}\)
\(=\frac{\frac{-1}{6}}{\frac{4}{25}\cdot\frac{-125}{64\cdot27}}=\frac{\frac{-1}{6}}{\frac{4}{1}\cdot\frac{-5}{64\cdot27}}\)
\(=\frac{\frac{-1}{6}}{4\cdot\frac{-5}{64\cdot27}}=\frac{\frac{-1}{6}}{-\frac{20}{64\cdot27}}=\frac{72}{5}\)
Bài làm
a) \(\left(\frac{2}{3}\right)^3.\left(-\frac{3}{4}\right)^2.\left(-1\right)^5\)
\(=\frac{8}{27}.\frac{9}{16}.\left(-1\right)\)
\(=-\frac{1}{6}\)
b) \(\left(\frac{2}{5}\right)^2.\left(-\frac{5}{12}\right)^3\)
\(=\frac{4}{25}.\left(-\frac{125}{1728}\right)\)
\(=-\frac{5}{432}\)
# Học tốt #
Mọi người ơi!!
Cái này là rút gọn theo cách hợp lý
Cái biểu thức đằng trên phần biểu thức đằng dưới nha!!! @#@
a) \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{5^{10}.9^{10}.5^{20}}{5^{15}.5^{15}.3^{15}}=\frac{5^{30}.3^{20}}{5^{30}.3^{15}}=3^5=243\)
b) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}\)
\(=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=-3^3=-27\)
c) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3-1\right)}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(=\frac{2.6}{3.5}=\frac{4}{5}\)
d) \(\frac{3.11+42}{5^3}=\frac{33+42}{5^3}=\frac{75}{5^3}=\frac{5^2.3}{5^3}=\frac{3}{5}\)
\(=25.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}\)
\(=5^{n-1}+5^n-6.5^{n-1}\)
\(=5^{n-1}\left(1-6\right)+5^n=-5.5^{n-1}+5^n=-5^{n-1+1}+5^n=-5^n+5^n=0\)