Cho A = 70 + 71 + 72 + .... + 72016 + 72017
Hãy chứng minh A chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
b) \(A=1+5+5^1+5^2+5^3+...+5^{71}\)
\(\Rightarrow A=\left(1+5^1+5^2\right)+5^3\left(1+5^1+5^2\right)+...+5^{69}\left(1+5^1+5^2\right)\)
\(\Rightarrow A=31+5^3.31+...+5^{69}.31\)
\(\Rightarrow A=31\left(1+5^3+...+5^{69}\right)⋮31\left(dpcm\right)\)
a) \(A=1+5^1+5^2+5^3+...+5^{71}\)
\(\Rightarrow A=\dfrac{5^{71+1}-1}{5-1}=\dfrac{5^{72}-1}{4}\)
\(4A+x=5^{72}\)
\(\Rightarrow4.\dfrac{5^{72}-1}{4}+x=5^{72}\)
\(\Rightarrow5^{72}-1+x=5^{72}\)
\(\Rightarrow x=1\)
Ta co :
A=2536 -571+570
A=(52)36-571+570
A=572-571+570
A=570.52-570.51+570.5
A=570(52-51+5)
A=570.25
Vay 570.25 chia het cho 130
dug 100%
a: \(B=3^1+3^2+...+3^{2010}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2008}\right)⋮13\)
b: \(C=5^1+5^2+...+5^{2010}\)
\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+...+5^{2008}\right)⋮31\)
c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{2008}\right)⋮57\)
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
\(7^1+7^2+7^3+...+7^{117}+7^{118}=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{116}\left(1+7+7^2\right)\)
\(=7.57+7^4.57+...+7^{116}.57=57\left(7+7^4+...+7^{116}\right)⋮57\)
A = ( 7^0 + 7^1 ) + ( 7^2 + 7^3 ) + ... +( 7^2016 + 7^2017 )
A = 7^0 ( 1 + 7 ) + 7^2 ( 1 + 7 ) + ... + 7^2016 ( 1 + 7 )
A = 7^0 . 8 + 7^2 . 8 + ... + 7^2016 . 8
A = 8 ( 7^0 + 7^2 + ... + 7^2016 )
=> A chia het cho 8
A = ( 7^0 + 7^1 ) + ( 7^2 + 7^3) + ......+ ( 7^2016 + 7 ^ 2017 )
A = 8 + 7^2 (1 + 7 ) + ....+ 7 ^ 2016 (1 + 7)
A = 8 + 7^2 . 8 +....+ 7 ^ 2016 . 8
A = 8. (1 + 7 ^ 2 +.....+ 7 ^ 2016 ) chia hết cho 8
Vậy A chia hết cho 8