Tìm x từ tỉ lệ thức :
d) \(13\frac{1}{3}\): \(1\frac{1}{3}\) = 26 :(2x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 0,4 : x = x : 0,9
<=> x2 = 0,4 . 0,9
<=> x2 = 0,36
<=> x = 0,6 hoặc -0,6
b, \(13\frac{1}{3}\div1\frac{1}{3}=26\div\left(2x-1\right)\)
\(\Leftrightarrow\frac{40}{3}\div\frac{4}{3}=26\div\left(2x-1\right)\)
\(\Leftrightarrow10=26\div\left(2x-1\right)\)
\(\Leftrightarrow2x-1=\frac{13}{5}\)
\(\Leftrightarrow2x=\frac{18}{5}\)
\(\Leftrightarrow x=\frac{9}{5}\)
c, \(0,2\div1\frac{1}{5}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow\frac{1}{5}\div\frac{6}{5}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow\frac{1}{6}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow6x+7=4\)
\(\Leftrightarrow6x=-3\)
\(\Leftrightarrow x=\frac{-1}{2}\)
d, \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Leftrightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Leftrightarrow259-7x=3x+39\)
\(\Leftrightarrow-10x=-220\)
\(\Leftrightarrow x=22\)
a) 0,4 : x = x : 0,9
x2 = 0,4 . 0,9
x2 = \(\frac{9}{25}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{-3}{5}\end{cases}}\)
b) \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
26 : ( 2x - 1 ) = 10
2x - 1 = \(\frac{13}{5}\)
\(\Rightarrow x=\frac{9}{5}\)
c) 0,2 : \(1\frac{1}{5}=\frac{2}{3}:\left(6x+7\right)\)
\(\frac{1}{6}=\frac{2}{3}:\left(6x+7\right)\)
\(6x+7=4\)
\(\Rightarrow x=\frac{-1}{2}\)
1) a) Ta có: \(\frac{x}{-15}=\frac{-60}{x}\) \(\Rightarrow x^2=\left(-15\right).\left(-60\right)=900\)
\(\Rightarrow x=30\)
b) \(\frac{-2}{x}=\frac{-x}{\frac{8}{25}}\) \(\Rightarrow x.\left(-x\right)=\left(-2\right).\frac{8}{25}\)
\(\Rightarrow x.\left(-x\right)=\frac{-16}{25}\)
\(\Rightarrow x.\left(-x\right)=\left(\frac{-4}{5}\right).\frac{4}{5}\)
Vậy \(x=\frac{4}{5}\)
2) a) \(3,8: \left(2x\right)=\frac{1}{4}:2\frac{2}{3}\)
\(\Rightarrow3,8: \left(2x\right)=\frac{3}{32}\)
\(\Rightarrow2x=\frac{3}{32}:3,8=\frac{15}{608}\)
\(x=\frac{15}{608}:2=\frac{15}{1216}\)
Vậy \(x=\frac{15}{1216}\)
b) \(\left(0,25x\right):3=\frac{5}{6}:0,125\)
\(\Rightarrow\left(0,25x\right):3=\frac{20}{3}\)
\(\Rightarrow0,25x=\frac{20}{3}.3=20\)
\(\Rightarrow x=20:0,25=80\)
Vậy x = 80
c) \(0,01:2,5=\left(0,75x\right):0,75\)
\(\Rightarrow\frac{1}{250}=\left(0,75x\right):0,75\)
\(\Leftrightarrow0,75x=\frac{1}{250}.0,75=\frac{3}{1000}\)
\(\Rightarrow x=\frac{3}{1000}:0,75=\frac{1}{250}\)
Vậy \(x=\frac{1}{250}\)
d) \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow\frac{5}{3}=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow0,1x=\frac{5}{3}.\frac{2}{3}=\frac{10}{9}\)
\(\Rightarrow x=\frac{10}{9}:0,1=\frac{100}{9}\)
Vậy \(x=\frac{100}{9}\)
a) \(\frac{x}{-15}=\frac{-60}{x}\Leftrightarrow x.x=-15.\left(-60\right)\Leftrightarrow x^2=900\Leftrightarrow x^2=\orbr{\begin{cases}30^2\\\left(-30\right)^2\end{cases}}\Leftrightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5