K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2021

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

8 tháng 8 2021

hình như sai đề rồi ạ, đề của em là a2 + b2 - ca - cb = 0 ạ

26 tháng 7 2021

Vì \(\left|a\right|\le1;\left|b-1\right|\le2\)

\(=>\left|a\right|\cdot\left|b-1\right|=\left|ab-a\right|\le2\)

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) ta có:

\(\left|a-c+ab-a\right|\le\left|a-c\right|+\left|ab-a\right|=2+3=5\)

\(=>\left|ab-c\right|\le5\)

NV
22 tháng 10 2021

\(a^3+1+1\ge3a\)

\(b^3+1+1\ge3b\)

\(c^3+1+1\ge3c\)

\(2\left(a^3+b^3+c^3\right)\ge6abc\)

Cộng vế:

\(3\left(a^3+b^3+c^3\right)+6\ge3\left(a+b+c+2abc\right)=15\)

\(\Rightarrow a^3+b^3+c^3\ge3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

22 tháng 10 2021

em cảm ơn thầy ạ

 

28 tháng 7 2021

Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

Mà   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố.

 

13 tháng 9 2016

 a1/a2 = b1/b2 = c1/c2 = k

a1=k.a2, b1=k.b2, c1=k.c2

Biểu thức trở thành

√(k.a2 + k.b2 + k.c2).(a2 + b2 + c2)= √k.a2.a2 + √k.b2.b2 + √k.c2.c2

√k.(a2+b2+c2)2 = a2. √k + b2. √k + c2. √k

(a2+b2+c2). √k = (a2+b2+c2). √k (hiển nhiên đúng)

Suy ra điều phải chứng minh