Cho A = 3 + 3 + 32 + ... + 3100
Chứng minh A chia hết cho 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
A=1+3+3^2+3^3+...+3^98+3^99+3^100
A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
A=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy A chia hết cho 13
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
\(B=3+3^2+3^3+...+3^{120}\)
Dễ thấy \(B\)chia hết cho \(3\)do là tổng của các số hạng chia hết cho \(3\).
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{118}\right)⋮13\)
a) \(B\)là tổng các số hạng chia hết cho \(3\)nên chia hết cho \(3\).
b) \(B=3+3^2+...+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
c) \(B=3+3^2+...+3^{120}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{118}\right)⋮13\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\\ A=3\cdot4+3^3\cdot4+...+3^{89}\cdot4\\ A=4\left(3+3^3+...+3^{89}\right)⋮4\)
Các số hạng trong tổng \(A\) đều chia hết cho \(3\) nên \(\Rightarrow A⋮3\)
Vậy \(A⋮3\)
A=3+3^2+3^3+3^4+...+3^12
A=(3+3^2+3^3)+(3^4+3^5+3^6)+.....+(3^10+3^11+3^12) (gộp nhóm)
A=3.(1+3+3^2)+3^4.(1+3+3^2)+......+3^10.(1+3+3^2) (phân phối)
A=3.13+3^4.13+....+3^10.13
A=13.(3+3^4+....+3^10)
Vì 13⋮13
nên 13.(3+3^4+...+3^10)⋮13
=>A⋮13
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
a) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
vì n, n-1, n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮3\\ \Rightarrow\left(n^3-n\right)⋮3\)
b) \(n^5-n=n\left(n^4-1\right)\\ =n\left(n^2-1\right)\left(n^2+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)=\left(n-1\right)n\left(n+1\right)\left(n^2-4\right)+5\left(n-1\right)n\left(n+1\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n-2\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liên tiếp nên có 1 số chia hết cho 5 ⇒ (n-2)(n-1)n(n+1)(n+2)⋮5
5⋮5⇒5(n-1)n(n+1)⋮5
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow n^5-n⋮5\)
Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40