K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

700 : 0 x 5

= 0 x 5

= 0

17 tháng 12 2018

\(700:0x5\)

Vì không có số nào chia được cho 0 nên không thể thực hiện được phép chia .

* Hok tốt !

# Tiểu_Phương_Kooite ~

2 tháng 1 2019

0 nhé bn ơi

2 tháng 1 2019

Đáp án :

700 : 700 x 9 : 1 x 0

0

Vì số nào nhân cho 0 cũng bằng 0

k nha

Học tốt

Năm mới vui vẻ ^^

28 tháng 8 2020

Câu 1: Gãy tay

Câu 2: Lịch sử

Câu 3: Đường đời

Câu 4: Quần đảo

Câu 5: Bàn chân 

28 tháng 8 2020

Câu 1: Bệnh gãy tay

Câu 2: Lịch sử

Câu 3: Đường đời

Câu 4: Quần đảo

Câu 5: Cái chân

25 tháng 2 2018

a. 1,53143129*1019

b.58155598

c.6,934432008*1013

Lớp 1 đấy á???Đùa hả????

3 tháng 7 2019

#)Giải :

\(\left(y+1\right)+\left(y+3\right)+\left(y+5\right)+...+\left(y+49\right)=700\)

\(\left(y+y+y+...+y\right)+\left(1+3+5+...+49\right)=700\)(có 25 số hạng trong các ngoặc)

\(25y+\frac{\left(49+1\right)25}{2}=700\)

\(25y+625=700\)

\(\Rightarrow25y=75\)

\(\Rightarrow y=3\)

3 tháng 7 2019

(y+1)+(y+3)+(y+5)+...+(y+49)=700

=>(y+y+y+...+y)+(1+3+5+...+49)=700

-> y=(49-1):2+1=25 số hạng

=>25y+[(49+1)×25÷2]=700

=>25y+625=700

=>25y=75

=>y=3

25 tháng 11 2016

Theo đề ta có : x chia hết cho 45, x chia hết cho 70 và 0<x<700

suy ra : x thuộc BC (42,70)

42=2.3.7

25 tháng 11 2016

Theo đề ta có : x chia hết cho 42 , x chia hết cho 70 và 0<x<700

suy ra x tuộc BC (42,70)

42=2.3.7

70=2.5.7

BCNN(42,70)=2.3.5.7=210

BC(42,70)=B(210)={ 0;210;420;630;840;....}

Mà 0<x<700 nên x thuộc { 210;420;630}

a) \(x^2+6x+9=144\)

\(\Leftrightarrow\left(x+3\right)^2=12^2\)

\(\Leftrightarrow x+3=12\)

\(\Leftrightarrow x=9\)

13 tháng 2 2018

\(\text{a) }x^2+6x+9=144\\ \Leftrightarrow\left(x^2+6x+9\right)-144=0\\ \Leftrightarrow\left(x+3\right)^2-12^2=0\\ \Leftrightarrow\left(x+3+12\right)\left(x+3-12\right)=0\\ \Leftrightarrow\left(x+15\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+15=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-15\\x=9\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{9;-15\right\}\)

\(\dfrac{x-19}{1999}+\dfrac{x-23}{1995}+\dfrac{x+82}{700}=5\\ \Leftrightarrow\left(\dfrac{x-19}{1999}-1\right)+\left(\dfrac{x-23}{1995}-1\right)+\left(\dfrac{x+82}{700}-3\right)=0\\ \Leftrightarrow\dfrac{x-2018}{1999}+\dfrac{x-2018}{1995}+\dfrac{x-2018}{700}=0\\ \Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{1999}+\dfrac{1}{1995}+\dfrac{1}{700}\right)=0\\ \Leftrightarrow x-2018=0\left(\text{Vì }\dfrac{1}{1999}+\dfrac{1}{1995}+\dfrac{1}{700}\ne0\right)\\ \Leftrightarrow x=2018\)

Vậy nghiệm của phương trình là \(x=2018\)

\(\text{c) }x^3-3x^2+4=0\\ \Leftrightarrow x^3-2x^2-x^2+4=0\\ \Leftrightarrow\left(x^3-2x^2\right)-\left(x^2-4\right)=0\\ \Leftrightarrow x^2\left(x-2\right)-\left(x+2\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-2x+x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-2x\right)+\left(x-2\right)\right]\left(x-2\right)=0\\ \Leftrightarrow\left[x\left(x-2\right)+\left(x-2\right)\right]\left(x-2\right)=0\\\Leftrightarrow \left(x+2\right)\left(x-2\right)^2=0\\\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right. \)

Vậy tập nghiệm phương trình là \(S=\left\{-2;2\right\}\)

24 tháng 3 2020

dài lắm nên mình làm tắt

1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7

<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7

<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25

<=> -4x + 34 = -5x - 25

<=> x + 34 = -25

<=> x = -25 - 34

<=> x = - 59

2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x

<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x

<=> -x^2 - 3x - 8 = -x^2 - 2x + 9

<=> -3x - 8 = -2x + 9

<=> -x - 8 = 9

<=> -x = 9 + 8

<=> x = -17

3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2

<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2

<=> 2x^2 + 5x + 9 = 2x^2 - 8

<=> 5x + 9 = -8

<=> 5x = -8 - 9

<=> 5x = -17

<=> x = -17/5

4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3

<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3

<=> 12x - 33 = -7x + 3

<=> 19x - 33 = 3

<=> 19x = 3 + 33

<=> 19x = 36

<=> x = 36/19

5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)

<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72

<=> -16x + 64 = -72

<=> -16x = -72 - 64

<=> -16x = -136

<=> x = 136/16 = 17/2

6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3

<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3

<=> -x - 43 = 7x + 12

<=> -8x - 43 = 12

<=> -8x = 12 + 43

<=> -8x = 55

<=> x = -55/8

7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)

<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x

<=> 3x^2 - 12x + 11 = 3x^2 - x

<=> -12x + 11 = -x

<=> 11 = -x + 12x

<=> 11 = 11x

<=> x = 1

8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)

<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x

<=> -52 - x^3 = 5 - x^3 + 2x

<=> -52 = 5x + 2x

<=> -5x - 2x = 52

<=> -7x = 52

<=> x = -52/7

9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)

<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x

<=> 6x + 28 = 5 + 3x

<=> 6x + 28 - 3x = 5

<=> 3x + 28 = 5

<=> 3x = 5 - 28

<=> 3x = -23

<=> x = -23/3

10)  (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)

<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7

<=> -53 - 4x = 6x - 17

<=> -4x = 6x + 36

<=> -4x - 6x = 36

<=> -10x = 36

<=> x = -36/10 = -18/5