Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)
\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)
\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)
\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))
\(\Leftrightarrow x=2018\)
Vậy nghiệm của pt x=2018
b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)
\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)
\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)
\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)
\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))
\(\Leftrightarrow x=2018\)
Vậy nghiệm của pt x=2018
c) \(x^3-3x^2+4=0\)
\(\Leftrightarrow x^3+x^2-4x^2+4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)
a) \(x^2+6x+9=144\)
\(\Leftrightarrow\left(x+3\right)^2=12^2\)
\(\Leftrightarrow x+3=12\)
\(\Leftrightarrow x=9\)
\(\text{a) }x^2+6x+9=144\\ \Leftrightarrow\left(x^2+6x+9\right)-144=0\\ \Leftrightarrow\left(x+3\right)^2-12^2=0\\ \Leftrightarrow\left(x+3+12\right)\left(x+3-12\right)=0\\ \Leftrightarrow\left(x+15\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+15=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-15\\x=9\end{matrix}\right.\)
Vậy tập nghiệm phương trình là \(S=\left\{9;-15\right\}\)
\(\dfrac{x-19}{1999}+\dfrac{x-23}{1995}+\dfrac{x+82}{700}=5\\ \Leftrightarrow\left(\dfrac{x-19}{1999}-1\right)+\left(\dfrac{x-23}{1995}-1\right)+\left(\dfrac{x+82}{700}-3\right)=0\\ \Leftrightarrow\dfrac{x-2018}{1999}+\dfrac{x-2018}{1995}+\dfrac{x-2018}{700}=0\\ \Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{1999}+\dfrac{1}{1995}+\dfrac{1}{700}\right)=0\\ \Leftrightarrow x-2018=0\left(\text{Vì }\dfrac{1}{1999}+\dfrac{1}{1995}+\dfrac{1}{700}\ne0\right)\\ \Leftrightarrow x=2018\)
Vậy nghiệm của phương trình là \(x=2018\)
\(\text{c) }x^3-3x^2+4=0\\ \Leftrightarrow x^3-2x^2-x^2+4=0\\ \Leftrightarrow\left(x^3-2x^2\right)-\left(x^2-4\right)=0\\ \Leftrightarrow x^2\left(x-2\right)-\left(x+2\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-2x+x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-2x\right)+\left(x-2\right)\right]\left(x-2\right)=0\\ \Leftrightarrow\left[x\left(x-2\right)+\left(x-2\right)\right]\left(x-2\right)=0\\\Leftrightarrow \left(x+2\right)\left(x-2\right)^2=0\\\Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right. \)
Vậy tập nghiệm phương trình là \(S=\left\{-2;2\right\}\)
a) \(22-x\left(1-4x\right)=\left(2x+3\right)^3\)
\(\Leftrightarrow22-x+4x^2=8x^3+36x^2+54x+27\)
\(\Leftrightarrow-x-54x+4x^2-36x^2-8x^3=-22+27\)
\(\Leftrightarrow-8x^3-32x^2-55x=5\Leftrightarrow-8x^3-32x^2-55x-5=0\)
Bn tự làm tiếp nhé
b) \(\frac{2x}{3}+\frac{2x-1}{6}=\frac{4-x}{3}\Leftrightarrow\frac{2.2x}{6}+\frac{2x-1}{6}=\frac{2\left(4-x\right)}{6}\)
\(\Leftrightarrow2.2x+2x-1=2\left(4-x\right)\Leftrightarrow4x+2x-1=8-2x\)
\(\Leftrightarrow6x-1=8-2x\Leftrightarrow8x=9\Leftrightarrow x=\frac{9}{8}\)
Vậy phương trình có tập nghiệm S ={9/8}
c) \(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
Do \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}>0\)
Nên \(x-2020=0\Leftrightarrow x=2020\)
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
\(a.\dfrac{x-2}{2000}+\dfrac{x-3}{1999}=\dfrac{x-4}{1998}+\dfrac{x-5}{1997}\\ \Leftrightarrow\dfrac{x-2}{2000}-1+\dfrac{x-3}{1999}-1=\dfrac{x-4}{1998}-1+\dfrac{x-5}{1997}-1\\ \Leftrightarrow\dfrac{x-2}{2000}-\dfrac{2000}{2000}+\dfrac{x-3}{1999}-\dfrac{1999}{1999}=\dfrac{x-4}{1998}-\dfrac{1998}{1998}+\dfrac{x-5}{1997}-\dfrac{1997}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}=\dfrac{x-2002}{1998}+\dfrac{x-2002}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}-\dfrac{x-2002}{1998}-\dfrac{x-2002}{1997}=0\\ \Leftrightarrow\left(x-2002\right)\left(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\right)=0\\ \)
\(Do:\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\ne0\\ \Rightarrow x-2002=0\\ \Leftrightarrow x=2002\\ Vậy:S=\left\{2002\right\}\)
Mấy câu khác tương tự :v
b: \(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
=>123-x=0
=>x=123
c: \(\Leftrightarrow\dfrac{x-2}{2017}+1=\dfrac{x-1}{2018}+\dfrac{x}{2019}\)
\(\Leftrightarrow\left(\dfrac{x-2}{2017}-1\right)=\left(\dfrac{x-1}{2018}-1\right)+\left(\dfrac{x}{2019}-1\right)\)
=>x-2019=0
=>x=2019
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)
\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)
Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy...
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1+\frac{x-3}{2016}-1\)\(+\frac{x-2043}{8}+3=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-\frac{2018}{2018}+\frac{x-2}{2017}-\frac{2017}{2017}\)\(+\frac{x-3}{2016}-\frac{2016}{2016}+\frac{x-2043}{8}+\frac{24}{8}=0\)
\(\Leftrightarrow\)\(\frac{x-2019}{2018}+\frac{x-2019}{2017}+\frac{x-2019}{2016}\)\(+\frac{x-2019}{8}=0\)
\(\Leftrightarrow\)\(\left(x-2019\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow\)\(x-2019=0\) ( Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\ne0\))
\(\Leftrightarrow\) \(x=2019\)
Vậy phương trình có nghiệm là : \(x=2019\)