K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2015

1.3

2.2

3.số nào cũng dc

4.số nào cũng dc

5.9 và 9

6.9 và 9

7.số nào cũng dc

8.0 hoặc 5 nhá

tick cho tui 

Lộn môn r bạn ạ @huỳnh thị hiền thục

13 tháng 1 2018
Câu Đúng Sai
a x  
b   x
c x  
d x  

Giải thích:

a) Đúng vì theo tính chất 1 SGK.

b) Sai. Ví dụ: 5 ⋮̸ 6, 7 ⋮̸ 6 nhưng 5 + 7 = 12 ⋮ 6

c) Đúng vì nếu một trong hai số chia hết cho 5 mà số còn lại không chia hết cho 5 thì tổng đó không chia hết cho 5 (theo tính chất 2) (trái với đề bài).

d) Đúng vì nếu một số chia hết cho 7, số còn lại không chia hết cho 7 thì hiệu của chúng không chia hết cho 7 (theo tính chất 2) (trái với đề bài).

5 tháng 10 2021

Chọn khẳng định Sai trong các khẳng định sau:

A. Nếu mỗi số hạng của tổng chia hết cho 6 thì tổng chia hết cho 6.

B. Nếu mỗi số hạng của tổng không chia hết cho 6 thì tổng không chia hết cho 6.

C. Nếu tổng của hai số chia hết cho 5 và một trong hai số đó chia hết cho 5 thì số còn lại chia hết cho 5.

D. Nếu hiệu của hai số chia hết cho 7 và một trong hai số đó chia hết cho 7 thì số còn lại chia hết cho 7

Đáp án là B

5 tháng 10 2021

A bạn nhá

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

29 tháng 1 2019

Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)

Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)

Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)

\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)

Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)

P/S: bt làm có bài này thôi :v

31 tháng 1 2019

3) a=2=>a^3-a=8-2=6 ko chia hết cho 48 vô lí :(

17 tháng 12 2019

Cho đoạn thẳng AB bằng 6cm, trên tia AB  lấy điểm C sao cho AC bằng 4cm.

a)  Trong ba điểm A, B , C điểm nào nằm giữa hai điểm còn lại? Vì sao? 

15 tháng 11 2016

 Ca hai đều dung

15 tháng 11 2016

cả 2 đúng

11 tháng 7 2019

a , Đ

b, Đ

c, S

11 tháng 7 2019

a, nếu tổng của 2 số chia hết cho 9 và một trong hai số chia hết cho 3 thì số còn lại chua hết cho 3.Đ

b, nếu hiệu của 2 số chia hết cho 6 và số thứ nhất chia hết cho 6 thì số thứ hai chia hết cho 3.Đ

c, nếu a chia hết cho 18, b chia hết cho 9, c không chia hết cho 6 thì a+b+c không chia hết cho 3.S