K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét trên tử

Ta có :

1.5.6 + 2.10.12 + 4.20.24 + 9.45.54

= 1.5.6 + 2323. 1.5.6 + 4343.1.5.6 + 9393.1.5.6

= 1.5.6 ( 2^3 + 4^3 + 9^3 )

Xét mẫu

Ta có :

1.3.5 + 2.6.10 + 4.12.20 + 9.27.45

Ta có : a100 = ( a50 )2 mà a là số lẻ

=> a50 là số lẻ 

=> ( a50 )2 là số chính phương lẻ 

=> a100 = ( a50 )2 chia 4 dư 1

=> a100 - 1 ⋮ 4

19 tháng 6 2019

a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.

Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)

Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)

Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).

b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)

Không mất tính tổng quát, ta giả sử: 

19 tháng 6 2019

b) Làm tiếp : Giả sử a1=a2.

Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)

\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)

Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)

\(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài

Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2

Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).

8 tháng 1 2019

Giả sử 100 số đó đôi một khác nhau

Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)

Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.

Vì vậy điều giả sử sai, ta có điều phải chứng minh

9 tháng 1 2019

cảm ơn bạn

7 tháng 4 2018

Giả sử trong 100 số đó không có số nào bằng nhau a1 > a2>a3>.....a100

Mà a1,a2,a3,...,a100 thuộc Z

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{101}{2}\)(vôlý)

Vậy có ít nhất 2 số bằng nhau trong dãy số trên

27 tháng 12 2018

còn cách nào khác k bạn

1 tháng 12 2016

Gọi phương trình đã cho là f(x) 

Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)

f(0) = a0 = - t.Q(x) (1)

Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)

Từ (1) ta có a0 là số lẻ nên t phải là số lẻ

Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + alà tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ

Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)

Vậy f(x) không có nghiệm nguyên

1 tháng 1 2018

Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )

=> 2n+1 và 6n+5 đều chia hết cho d

=> 3.(2n+1) và 6n+5 đều chia hết cho d

=> 6n+3 và 6n+5 đều chia hết cho d

=> 6n+5-(6n+3) chia hết cho d

=> 2 chia hết cho d

Mà 2n+1 lẻ nên d lẻ

=> d=1

=> ƯCLN (2n+1;6n+5) = 1

=> ĐPCM

k mk nha

1 tháng 1 2018

Gọi UCLN(2n+1;6n+5)=d

Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d

       6n+5 chia hết cho d

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d

\(\Rightarrow2\) chia hết cho d

\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2

\(\Rightarrowđpcm\)

24 tháng 11 2017

Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3

=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

24 tháng 11 2017

vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp  , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2

+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2 

- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3

- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )

khi đó  n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3 

- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )

khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

mà ƯCLN( 2 ; 3 ) = 1

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3

=> n ( n + 1 ) ( n + 2 ) chia hết cho 6

chúc bạn học tốt

^^