So sánh A và B biết : bằng 1/9 + 1/9 + 1/999 + 1/2000 + 1/2001+1/2002 +...+1/2009
B=203/600
Các bạn giúp mình với nhé mình đang cần gấp lắm .Cảm ơn các bạn nhiều nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{x}.\)
\(A=1+\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{x}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2.2}+...+\frac{1}{x:2}\)
\(\Rightarrow2A-A=2-\frac{1}{x}\)
\(A=2-\frac{1}{x}=\frac{4095}{2048}\)
=> 1/x = 1/2048
=> x = 2048 ( 2048 = 211 )
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{2}{x}+\frac{1}{x}\right)\)
=> \(A=2-\frac{1}{x}\)
Giải phương trình:
\(2-\frac{1}{x}=\frac{4095}{2048}\)
\(\frac{1}{x}=2-\frac{4095}{2048}\)
\(\frac{1}{x}=\frac{1}{2048}\)
x=2048
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
= (1+99) + (3 + 97) + ( 5 + 95 ) + ....... + ( 49 + 51 )
có tất cả 25 cặp
= 100 x 25 = 2500
Nhớ k mình nhé! Thanks bạn
(1+99)+(3+97)+....+(49+51)=100+100+...+100=5000
Luu y:co 50 so 100
A = \(\dfrac{7^{2000}+1}{7^{2021}+1}\) ⇒ 7A = \(\dfrac{7^{2021}+7}{7^{2021}+1}\) = 1 + \(\dfrac{6}{7^{2021}+1}\)
B = \(\dfrac{7^{2021}+1}{7^{2022}+1}\) ⇒ 7B = \(\dfrac{7^{2022}+7}{7^{2022}+1}\) = 1 + \(\dfrac{6}{7^{2022}+1}\)
Vì \(\dfrac{6}{7^{2021}+1}\) > \(\dfrac{6}{7^{2022}+1}\) nên 7A > 7B (phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn)
7A > 7B
A>B
Ta có: \(17A=17.\left(\frac{17^{2001}+1}{17^{2002}+1}\right)=\frac{17^{2002}+17}{17^{2002}+1}=\frac{17^{2002}+1+16}{17^{2002}+1}=1+\frac{16}{17^{2002}+1}\)
\(17B=17.\left(\frac{17^{2000}+1}{17^{2001}+1}\right)=\frac{17^{2001}+17}{17^{2001}+1}=\frac{17^{2001}+1+16}{17^{2001}+1}=1+\frac{16}{17^{2001}+1}\)
Vì 1 = 1 và 16 = 16 nên so sánh mẫu:
172002 + 1 > 172001 + 1
=> \(1+\frac{16}{17^{2002}+1}<1+\frac{16}{17^{2001}+1}\)
=> 17A < 17B
=> A < B.
Ta có:\(17^{2001}>17^{2000},1=1\) Còn \(\frac{1}{17^{2002}},\frac{1}{17^{2001}}\) thì ko quan trọng chúng đều nhỏ hơn 1
Nên A>B
Lời giải:
Vì $x=9$ nên $x-9=0$
Ta có:
$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$
$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$
$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$
$=x-10=9-10=-1$
Đáp án là B lớn hơn A nha
NHỚ K CHO MIK NHA MY FRIEND :>