tìm x biết:x^4-9x^3-x^2+9x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\left(x-4\right)\left(x^2-9\right)=0\)\(\)
\(\Rightarrow x-4=0\) hay \(x^2-9=0\)
\(\Rightarrow x=4\) hay \(x^2=9=3^2\)
\(\Rightarrow x=4\) hay \(x=\pm3\)
⇔x2(x-4) -9(x-4) = 0
⇔(x-4).(x-3).(x+3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)
hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)
\(\Leftrightarrow x^2-9=0\)
=>x=3 hoặc x=-3
\(x^3-9x+7x^2-63=0\)
\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)
\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)
Vậy ...
x3−9x+7x2−63=0x3−9x+7x2−63=0
⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0
⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0
⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0
⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7
Vậy ...
a) 5x + 6 = 0
<=> 5x = -6
<=> x = \(-\frac{6}{5}\)
Vậy phương trình có tập nghiệm là: S = {\(-\frac{6}{5}\)}
b) 9x - 3 = 6x + 21
<=> 3x = 24
<=> x = 8
Vậy phương trình có tập nghiệm là: S = {8}
c) x3 - 9x = 0
<=> x(x2 - 9) = 0
<=> x(x - 3)(x + 3) = 0
<=> \(\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: S = {0; 3; -3}
d) ĐKXĐ: \(x\ne2;x\ne-2\)
\(\frac{1}{x-2}-\frac{x^2-4}{4-x^2}=0\)
\(\Leftrightarrow\frac{1}{x-2}+\frac{x^2-4}{x^2-4}=0\)
\(\Rightarrow x+2+x^2-4=0\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(TM\right)\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: S ={1}
a) Ta có: 5x+6=0
⇔5x=-6
hay \(x=-\frac{6}{5}\)
Vậy: \(S=\left\{-\frac{6}{5}\right\}\)
b) Ta có: 9x-3=6x+21
⇔9x-6x=21+3
⇔3x=24
hay x=8
Vậy: S={8}
c) Ta có: \(x^3-9x=0\)
\(\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy: S={-3;0;3}
d) ĐKXĐ: x∉{2;-2}
Ta có: \(\frac{1}{x-2}-\frac{x^2-4}{4-x^2}=0\)
\(\Leftrightarrow\frac{1}{x-2}+\frac{4-x^2}{4-x^2}=0\)
\(\Leftrightarrow\frac{1}{x-2}+1=0\)
\(\Leftrightarrow\frac{1}{x-2}+\frac{x-2}{x-2}=0\)
Suy ra: \(1+x-2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(tm)
Vậy: S={1}
\(a,9x^2-6x-3=0\)
\(\Leftrightarrow9x^2-6x+1-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2=4\)
\(\Rightarrow3x-1=\pm2\)
\(\hept{\begin{cases}3x-1=2\Rightarrow x=1\\3x-1=-2\Rightarrow x=\frac{-1}{3}\end{cases}}\)
Vậy \(x=1\) hoặc \(x=\frac{-1}{3}\)
\(b,x^3+9x^2+27x+19=0\)
\(\Leftrightarrow x^3+9x^2+27x+27-8=0\)
\(\Leftrightarrow\left(x+3\right)^3=8\)
\(\Rightarrow x+3=2\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
\(c,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow-25x=11\)
\(\Leftrightarrow x=\frac{-11}{25}\)
Vậy \(x=\frac{-11}{25}\)
\(9x^2-6x-3=0\)
<=> \(\left(3x\right)^2-2.3x.1+1-4=0\)
<=> \(\left(3x-1\right)^2-2^2=0\)
<=> \(\left(3x-3\right)\left(3x+1\right)=0\)
<=> \(\hept{\begin{cases}3x-3=0\\3x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
\(x^3+9x^2+27x+19\) \(=0\)
<=>\(x^3+x^2+8x^2+8x+19x+19=0\)
<=> \(x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
<=> \(\left(x^2+8x+19\right)\left(x+1\right)=0\)
mà \(x^2+8x+19>0\)
=> \(x+1=0\)
<=> \(x=-1\)
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
<=> \(x\left(x^2-25\right)-\left(x+2\right)\left(x-2\right)^2=3\)
<=> \(x^3-25x-\left(x^2-4\right)\left(x-2\right)=3\)
<=> \(x^3-25x-\left(x^3-2x^2-4x+8\right)=3\)
<=> \(x^3-25x-x^3+2x^2+4x-8=3\)
<=> \(2x^2-21x-8=3\)
<=> \(2x^2-21x-11=0\)
<=> \(2x^2-22x+x-11=0\)
<=> \(2x\left(x-11\right)+\left(x-11\right)=0\)
<=> \(\left(2x+1\right)\left(x-11\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-11=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=11\end{cases}}\)
\(x^4-9x^3-x^2+9x=0\)
\(\Leftrightarrow\left(x^4-x^2\right)+\left(-9x^3+9x\right)=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-9x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-9\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x-9=0\) hoặc \(x-1=0\) hoặc \(x+1=0\).
1.\(x=0\).
2. \(x-9=0\Leftrightarrow x=-9\).
3. \(x-1=0\Leftrightarrow x=1\).
4. \(x+1=0\Leftrightarrow x=-1\).
Vậy \(x\in\left\{-9;-1;0;1\right\}\).