Tìm tất cả các giá trị a,b thỏa mãn:
\(\sqrt{a-b}=\sqrt{a}-\sqrt{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk : a;b >= 0
pt => a-b = a+b-2\(\sqrt{ab}\)
<=> 2\(\sqrt{ab}\) = (a+b)-(a-b) = 2b
<=> \(\sqrt{ab}\)= b
=> ab = b^2
<=> a=b >= 0
Thử lại : VT = 0
VP = 0
=> VT=VP=0 (tm)
Vậy a=b >= 0
Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)
Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì \(\left(a-b=b-c\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)
- Theo BĐT Cauchy ta có:
\(\sqrt{a.1}\le\dfrac{a+1}{2}\)
\(\sqrt{b.1}\le\dfrac{b+1}{2}\)
\(\sqrt{c.1}\le\dfrac{c+1}{2}\)
\(\sqrt{ab}\le\dfrac{a+b}{2}\)
\(\sqrt{bc}\le\dfrac{b+c}{2}\)
\(\sqrt{ca}\le\dfrac{c+a}{2}\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3.3+3}{2}=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Mà ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6\)
\(\Rightarrow a=b=c=1\)
\(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2023}}=1\)
\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
ĐKXĐ: \(a,b\ge0;a\ge b\)
\(\sqrt{a-b}=\sqrt{a}-\sqrt{b}\)
\(\Rightarrow\left(\sqrt{a-b}\right)^2=\left(\sqrt{a}-\sqrt{b}\right)^2\)
\(\Leftrightarrow a-b=a-2.\sqrt{ab}+b\)
\(\Leftrightarrow2b=2\sqrt{ab}\)
\(\Leftrightarrow b=\sqrt{ab}\)
\(\Leftrightarrow b^2=\left(\sqrt{ab}\right)^2\)
\(\Leftrightarrow b^2=ab\)
\(\Leftrightarrow b^2-ab=0\)
\(\Leftrightarrow b\left(b-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=0\\b-a=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=0\\a=b\end{cases}}\)
b tự kết luận nhé~