Giá trị nhỏ nhất của : \(\left(x-1\right)^4+\left(x+5\right)^4-123=...\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
Có: \(\begin{cases}\left|x-1\right|\ge x-1\\\left|x-2\right|\ge x-2\\\left|x-3\right|\ge3-x\\\left|x-4\right|\ge4-x\end{cases}\)\(\forall x\)
\(\Rightarrow B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-1\right)+\left(x-2\right)+\left(3-x\right)+\left(4-x\right)\)
\(\Rightarrow B\ge4\)
Dấu "=" xảy ra khi \(\begin{cases}x-1\ge0\\x-2\ge0\\x-3\le0\\x-4\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Rightarrow2\le x\le3\)
Vậy với \(2\le x\le3\) thì B đạt GTNN là 4
Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0
vì vậy min của T =0
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)
\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)
\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)
\(\Rightarrow T\ge|43|\)
\(\Rightarrow T\ge43\)
Vậy \(Min_T=43\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
\(D=|x-1|+|x-4|=|x-1|+|4-x|\ge|x-1+4-x|=3\)
\(B=|1993-x|+|1994-x|=|1993-x|+|x-1994|\ge|1993-x+x-1994|=1\)
\(C=x^2+|y-2|-5\ge-5\)
Để D nhỏ nhất => I x-1I bé nhất hoặc I x-4I bé nhất => x-1 =0 hoặc x-4=0
=> x= 1 hoặc x=4
Vậy GTNN của D là: I 1-4I = 3 tại x= 1 hoặc x=4
B tương tự
Để C nhỏ nhất => x^2 bé nhất và I y - 2I bé nhất => x^2 = 0 và y-2 = 0
x= 0 và y=2
VaayjGTNN của C là -5 tại x=0 và y=2
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
\(B=\dfrac{\left(x-2\right)\left(x-3\right)\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)\)
\(B=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(B_{min}=-\dfrac{1}{4}\) khi \(x=\dfrac{3}{2}\)
\(B=\dfrac{\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
với mọi x.
\(B_{min}=-\dfrac{1}{4}\) tại \(x=\dfrac{3}{2}\)