K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

mình ko biết . xin lỗi nha

13 tháng 12 2018

A=4+4^2+4^3+...+4^50

A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)

A=(4+4^2)+4^2(4+4^2)+...+4^48(4+4^2)

A=4+4^2(4^2 +4^4+...+4^48)\(⋮\)10 (vì 4+4^2=20\(⋮\)10)

Vậy A\(⋮\)10

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

10 tháng 7 2021

Ta có: `A = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8`

`= (1 + 4 + 4^2) + (4^3 + 4^4 + 4^5) + (4^6 + 4^7 + 4^8)`

`= 21 + 4^3 (1 + 4 + 4^2) + 4^6 (1 + 4 + 4^2)`

`= 21 + 4^3 . 21 + 4^6 . 21`

`= 21 (1 + 4^3 + 4^6)`

Vì \(21\left(1+4^3+4^6\right)⋮3\) nên \(A⋮3\)

31 tháng 10 2023

Đặt \(A=4+4^2+4^3+...+4^{89}+4^{90}\)

Ta có: \(A=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)

\(A=84+...+4^{87}.\left(4+4^2+4^3\right)\)

\(A=84+...+4^{87}.84\)

\(A=84.\left(1+...+4^{87}\right)\)

Vì \(84⋮21\) nên \(84.\left(1+...+4^{87}\right)⋮21\)

Vậy \(A⋮21\)

\(#\)  Hallowen vui vẻ 🎃

22 tháng 12 2023

Số số hạng của B:

2023 - 1 + 1 = 2023 (số)

Do 2023 chia 2 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 2 số hạng, còn dư 1 số như sau:

B = 4 + (4² + 4³) + (4⁴ + 4⁵) + ... + (4²⁰²² + 4²⁰²³)

= 4 + 4².(1 + 4) + 4⁴.(1 + 4) + ... + 4²⁰²².(1 + 4)

= 4 + 4².5 + 4⁴.5 + ... + 4²⁰²².5

= 4 + 5.(4² + 4⁴ + ... + 4²⁰²²)

Do 5.(4² + 4⁴ + ... + 4²⁰²²) ⋮ 5

⇒ B = 4 + 5.(4² + 4⁴ + ... + 4²⁰²²) chia 5 dư 4

Vậy B không chia hết cho 5

21 tháng 11 2019

D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 + 4 4 + 4 5 + ... +  4 57 + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 . 1 + 4 + 4 2 + ... +  4 57 . 1 + 4 + 4 2

=  21 + 21 . 4 3 + . . . + 21 . 4 57 ⋮ 21

13 tháng 2 2018

18 tháng 12 2021

Đề sai rồi bạn