tìm các số nguyên n để \(10n^2+n-10\) chia hết cho n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(10n^2+n-10\)
\(=\left(10n^2-10\right)+n\)
\(=10\left(n^2-1\right)+n\)
\(=10\left(n+1\right)\left(n-1\right)+n\)
Để 10n^2+n-10 chia hết cho n-1 thì n = 0
(mk làm bừa đấy, k bt có đúg k)
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)
Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4
b) Cho n-1=0 => n=1
Sau đó thay vào biểu thức 10n2+n -10 sẽ tìm ra n=1
Cho mình nha!!! <3
Ta có : n3 - 2n + 3n + 3
= n3 - n + 3
= n(n2 - 1)
= n(n - 1)(n + 1) + 3
Để n3 - 2n + 3n + 3 chia hết cho n - 1
=> n(n - 1)(n + 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-2;0;2;4}
Ta co : 3.n^3+10.n^2-5
=3.n^3+9.n^2+3n-3n-1-4
=n^2.(3n+1)+3n(3n+1)-(3n+1)-4
=(3n+1)(n^2+3n-1)-4
De 3.=10.-5 chia het cho 3n+1
=> (3n+1)(3n-1)-4 chia het cho 3n+1
=> -4 chia het cho 3n+1
Ma U(-4)={-4;-2;-1;1;2;4}
=>3n+1={-4;-2;-1;1;2;4}
=>3n={-5;-3;-2;0;1;4}
=>n={5/3;-1;-2/3;0;1/3;1}
Ma n thuoc N
Vay n={-1;0;1}
lik e nhe
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
\(10n^2+n-10=10n^2-10n+11n-11+1=10n\left(n-1\right)+11\left(n-1\right)+1\)
\(Để:10n^2+n-10\)chia hết cho n-1 thì 1 chia hết cho n-1 => n-1 =1 => n =2 hoặc n-1 =-1 => n =0
Vậy n = 0 ; 2