So sánh các số â và aa với a \(\in\)N và \(0< a\le9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, trường hợp 1 :
a<b ta có :
ab+an<ab+bn
a.(b+n) < b(a+n)
a/b<a+n/b+
th2 bạn làm tương tử nhé thay dấu lớn thui phần b y hệt a nhé 100% đấy hum nay mình vừa học xong
vì a<0;A>0 và b<c
=> a và b là số âm, còn c là số dương.
mà A>0 => c>0 vì A=a.b.c
vì b là số âm => b<0.
(do đó: b.c<0.)
vậy b<0 và c>0.
chúc học giỏi, k nha...
Có: a<0, A>0, b<c.
=> a và b là số nguyên âm, c là số nguyên dương.
mà A>0.
=> c>0(vì A=a.b.c).
mà b là số nguyên âm.
=>b<0.
Vậy b<, c>0.
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
â = a^a
Bạn ơi sai đề rồi phải là aa mới đúng
Giải
Giả sử ta có :
aa >aa
<=> 11a > aa
<=> 11> aa : a = aa-1
với a \(\in\)N , a \(\ne\) 0 , aa-1 < 11 => a\(\le\)3
Do đó ta có : a \(\in\)N và a\(\ne\)0
- Nếu a \(\le\)3 thì aa > aa
- Nếu 3< a \(\le\)9 thì aa < aa
Học tốt
Sgk