\(\in N\)và 0 < a 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

Ta có:

aa=a2

Nếu a<2 thì aa>aa

Nếu a >2 thì aa<aa

3 tháng 6 2017

Nếu a  \(\le\) 3 thì aa  <a
Nếu a  > 3 thì aa > a2

12 tháng 12 2018

Bạn ơi sai đề rồi phải là aa mới đúng

                                                                               Giải 

Giả sử ta có : 

                                     aa  >aa

                              <=> 11a > aa

                              <=> 11> aa : a = aa-1

 với a \(\in\)N , a \(\ne\) 0  , aa-1 < 11 => a\(\le\)3

Do đó ta có : a \(\in\)N và a\(\ne\)0

- Nếu a \(\le\)3 thì aa > aa

- Nếu 3< a \(\le\)9 thì aa < aa

Học tốt 

Sgk

Câu 2: 

Ta có: \(x^2=1\)

=>x=1 hoặc x=-1

=>x là số hữu tỉ

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0
25 tháng 6 2017

em chịu chị ơi