K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

ảnh cung xử nữ đây nha bạn  mẹ mình cung xử nữ nẹ mình sinh lắm luôn ý mình thì cung sư tử nha mình sinh ngày 10/8/2010 mha

undefinedundefined

25 tháng 9 2021

undefined

undefinedđây nhé

25 tháng 9 2021

tui chỉ biết như này thuiundefined

21 tháng 10 2021

Từ từ để mình vẽ cho

1: 3x^2+7x-6

=3x^2+9x-2x-6

=3x(x+3)-2(x+3)

=(x+3)(3x-2)

2: =3(x^2+x-2)

=3(x^2+2x-x-2)

=3(x+2)(x-1)

3: =3(x^2-x-2)

=3(x^2-2x+x-2)

=3(x-2)(x+1)

1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:

\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)

Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)

2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

11 tháng 5 2021

câu 3 chứ

2 tháng 8 2021

d) Gọi x,y lần lượt là số mol Al, Fe

\(\left\{{}\begin{matrix}27x+56y=8,3\\1,5x+y=0,25\end{matrix}\right.\)

=> x=0,1 ; y=0,1

Kết tủa : Al(OH)3, Fe(OH)2 

Bảo toàn nguyên tố Al: \(n_{Al\left(OH\right)_3}=n_{Al}=0,1\left(mol\right)\)

Bảo toàn nguyên tố Fe: \(n_{Fe\left(OH\right)_2}=n_{Fe}=0,1\left(mol\right)\)

=> \(m=0,1.78+0,1.90=16,8\left(g\right)\)

Nung kết tủa thu được chất rắn : Al2O3 và FeO

Bảo toàn nguyên tố Al: \(n_{Al_2O_3}.2=n_{Al}\Rightarrow n_{Al_2O_3}=0,05\left(mol\right)\)

Bảo toàn nguyên tố Fe: \(n_{FeO}=n_{Fe}=0,1\left(mol\right)\)

=> \(a=0,05.102+0,1.72=12,3\left(g\right)\)

12 tháng 10 2021

Câu 2: 

Ta có: \(\sqrt{x^2-4x+4}=x-1\)

\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)

\(\Leftrightarrow-2x=-3\)

hay \(x=\dfrac{3}{2}\left(tm\right)\)

a: Ta có: \(M=\left(\dfrac{1}{2x-y}-\dfrac{-x^2+3y-2}{4x^2-y^2}-\dfrac{2}{2x+y}\right):\left(\dfrac{x^2+y^2}{4x^2-y^2}+1\right)\)

\(=\dfrac{2x+y+x^2-3y+2-4x+2y}{\left(2x-y\right)\left(2x+y\right)}:\dfrac{x^2+y^2+4x^2-y^2}{\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{x^2-2x+2}{5x^2}\)

c: Ta có: \(\left\{{}\begin{matrix}x^2-2x+2=\left(x-1\right)^2+1>0\forall x\\5x^2>0\forall xtmĐKXĐ\end{matrix}\right.\)

Do đó: M>0