Vói giá trị nào của biến thì
A= \(\frac{3x^2+18x+43}{x^2+6x+13}\)đạt GTLN
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để N nguyên thì \(3x^2-4x-17⋮x+2\)
\(3x^2+6x-10x-20+3⋮x+2\)
\(3x\left(x+2\right)-10\left(x+2\right)+3⋮x+2\)
\(\left(x+2\right)\left(3x-10\right)+3⋮x+2\)
Dễ thấy \(\left(x+2\right)\left(3x-10\right)⋮x+2\)
\(\Rightarrow3⋮x+2\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow x\in\left\{-1;1;-5;-3\right\}\)
Vậy......
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
Ta có:\(x^2+4x+10=\left(x^2+2\cdot2\cdot x+2^2\right)+6=\left(x+2\right)^2+6\)
\(\Rightarrow\frac{3}{x^2+4x+10}=\frac{3}{\left(x+2\right)^2+6}\)
Do \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+6\ge6\)
\(\Rightarrow\frac{3}{\left(x+2\right)^2+6}\le\frac{3}{6}=\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow x=-2\)
(3x-1)(2x+7)-(x-1)(6x-5)-(18x-12)
=6x2-2x+21x-7-(6x2-5x-6x+5)-18x+12
=6x2-2x+21x-7-6x2+5x+6x-5-18x+12
=12x
\(A=\frac{3\left(x^2+6x+13\right)+4}{x^2+6x+13}=3+\frac{4}{x^2+6x+13}=3+\frac{4}{\left(x+3\right)^2+4}\le3+1=4\)
Dấu "=" xảy ra khi: \(x+3=0\Rightarrow x=-3\)
Vậy GTLN của A là 4 khi x = -3