K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

x+y=7

=>(x+y)3-3xy(x+y)=73-3.10.7

<=>x3+3x2y+3xy2+y3-3x2y-3xy2=133

<=>x3+y3=133

 

=>(x-y)3+3xy(x-y)

=x3-3x2y+3xy2-y3+3x2y-3xy2

=x3-y3

*)Với x-y=3=>x3-y3=(x-y)3+3xy(x-y)=33+3.10.3=117

*))Với x-y=3=>x3-y3=(x-y)3+3xy(x-y)=(-3)3+3.10.(-3)=-117

28 tháng 6 2015

x + y = 7 => x = 7 - y thay vào x.y ta có:

           ( 7 -y) y = 10 =>7y - y^2 = 10 => y^2 - 7y + 10 = 0 => y^2 -2y - 5y +10 => y( y-2) - 5 (y - 2) = 0

 => ( y - 5)(y - 2)  = 0 => y = 5 hoặc 2  => x = 2 hoặc 5 ( Nếu bạn thêm đk  x > y hay y>x chior có một trường hợp thôi)

(+) y = 5 và x = 2 

=> x - y = 2- 5 = -5

x^2 + y^2 = 2^2 + 5^2 = 4 + 25 = 29 

x^3 + y^3 = 2^3 + 5^3 = 8 + 125 = 133 

x^3 - y^3 = 2^3 - 5^3 = 8 -125 = -117 

(+) Tương tự x = 5 và y = 2  

icon_check2.png

Đáp án:

P=±36P=±36

Giải thích các bước giải:

Ta có:

x2+y2+z2=16xyyz+zx=10(x2+y2+z2)2.(xyyz+zx)=162.(10)x2+y2+z22xy+2yz2zx=36(x22xy+y2)+z2+2yz2zx=36(xy)2+2z(yx)+z2=36(xy)22.(xy).z+z2=36(xyz)2=36xyz=±6P=x3y3z33xyz=(x33x2y+3xy2y3)z3+3x2y3xy23xyz=(xy)3z3+3x2y3xy23xyz=[(xy)z].[(xy)2+(xy).z+z2]+3xy(xyz)=(xyz).(x22xy+y2+xzyz+z2+3xy)=(xyz).(x2+y2+z2+xyyz+zx)Trưng hp 1: xyz=6P=6.(16+(10))=36Trưng hp 2: xyz=6P=(6).(16+(10))=36x2+y2+z2=16xy−yz+zx=−10⇒(x2+y2+z2)−2.(xy−yz+zx)=16−2.(−10)⇔x2+y2+z2−2xy+2yz−2zx=36⇔(x2−2xy+y2)+z2+2yz−2zx=36⇔(x−y)2+2z(y−x)+z2=36⇔(x−y)2−2.(x−y).z+z2=36⇔(x−y−z)2=36⇔x−y−z=±6P=x3−y3−z3−3xyz=(x3−3x2y+3xy2−y3)−z3+3x2y−3xy2−3xyz=(x−y)3−z3+3x2y−3xy2−3xyz=[(x−y)−z].[(x−y)2+(x−y).z+z2]+3xy(x−y−z)=(x−y−z).(x2−2xy+y2+xz−yz+z2+3xy)=(x−y−z).(x2+y2+z2+xy−yz+zx)Trường hợp 1: x−y−z=6⇒P=6.(16+(−10))=36Trường hợp 2: x−y−z=−6⇒P=(−6).(16+(−10))=−36

Vậy P=±36P=±36.

14 tháng 7 2021

MÌNH CHỈ BIẾT LÀM B7 THÔI NHA

P= 811^3+ 812^3+815^3+3.811.812.(-815)=  31694

K ĐÚNG HỘ TỚ NHA

25 tháng 8 2019

(x-y)(x^2+y^2)(x^3-y^3)

=7[(x-y)^2+2xy][(x-y)^3+3xy(x-y)]

=7(7^2+20)(7^3+30.7)

=7.(49+20)(343+210)

=7.69.553

=267099

        cho mk nha  ツ

Câu 3:

a: A(x)=x^3+3x^2-4x-12

B(x)=x^3-3x^2+4x+18

A(x)+B(x)

=x^3+3x^2-4x-12+x^3-3x^2+4x+18

=2x^3+6

A(x)-B(x)

=x^3+3x^2-4x-12-x^3+3x^2-4x-18

=6x^2-8x-30

b: A(-2)=(-8)+3*4-4*(-2)-12

=-20+3*4+4*2=0

=>x=-2 là nghiệm của A(x)

B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10

=>x=-2 ko là nghiệm của B(x)

 

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

13 tháng 8 2017

a) x + y = 6 và xy = 8 => x = 2; y = 4

2+ 42 = 4 + 16 = 20

12 tháng 8 2019

a) x^2+y^2= (x+y)^2-2xy

                 =36-2.8=20

b)x^3-y^3=(x-y)^3+3xy.(x-y)

                =323+3.8.7=511

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

16 tháng 2 2021

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)