Tìm giá trị nguyên của x để
x^3 +3x^4+3x-2 chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x3 - 3x2 - 3x - 1 ⋮ x2 + x + 1
f(x) = x3 + x2 - 4x2 + x - 4x - 4 + 3 ⋮ x2 + x + 1
f(x) = ( x3 + x2 + x ) - ( 4x2 + 4x + 4 ) + 3 ⋮ x2 + x + 1
f(x) = x ( x2 + x + 1 ) - 4 ( x2 + x + 1 ) + 3 ⋮ x2 + x + 1
f(x) = ( x2 + x + 1 ) ( x - 4 ) + 3 ⋮ x2 + x + 1
Mà ( x2 + x + 1 ) ( x - 4 ) ⋮ x2 + x + 1
=> 3 ⋮ x2 + x + 1
=> x2 + x + 1 thuộc Ư(3) = { 1; 3; -1; -3 }
Tự thay vào rồi tìm x thôi bạn
VD :
x2 + x + 1 = 1
<=> x2 + x = 0
<=> x ( x + 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Xét tiếp 3 t/h còn lại nha bạn
TA CÓ:
\(\frac{x^3-3x^2-3x-1}{x^2+x+1}=x^3-\frac{3\left(x^2+x+1\right)+2}{x^2+x+1}\)
\(=x^3-3+\frac{2}{x^2+x+1}\)
Để thỏa mãn đề bài => \(x^2+x+1\inƯ\left(2\right)\)
\(\Rightarrow x^2+x+1\in\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x^2+x\in\left\{0;-2;1;-3\right\}\)
\(\Rightarrow x\left(x+1\right)\in\left\{0;-2;1;-3\right\}\)
đến đây làm nốt
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
x^3+3x-5 chia hết cho x^2+2
=>x^3+2x+x-5 chia hết cho x^2+2
=>x-5 chia hết cho x^2+2
=>x^2-25 chia hết cho x^2+2
=>x^2+2-27 chia hết cho x^2+2
=>x^2+2 thuộc Ư(-27)
=>x^2+2 thuộc {3;9;27}
=>\(x\in\left\{1;-1;5;-5\right\}\)
=>3x+15-55 chia hết cho x+5
=> 3(x+5) -55 chia hết cho x+5
vì 3(x+5) chia hết cho x+5 nên 55 cũng chhia hết cho x+5
=> x+5 là ước của 55
=> x+5={1,-1,5,-5,11,-11,55,-55}
xét x+5 =....( đoạn này bạn tự làm nhé)
b) => 3x-12+4 chia hết cho x-4
=> 3(x-4) +4 chia hết cho x-4
vì 3(x-4) chia hết cho x-4 nên 4 chia hết cho x-4
=> x-4 là ước của 4
=> x-4={-1,1,-2,2,-4,4}
xét x-4=.....(bn xét lần lượt nha^^)