Tìm giá trị nguyên của x để x^3 +3x^4 + 3x - 2 chia hết cho (x+1)
bạn nào học sinh chuyên toán 9,10. kb với em nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x^2-3x-1=\left(x-4\right)\left(x^2+x+1\right)+3\)
\(\Rightarrow x^3-3x^2-3x-1\) chia hết \(x^2+x+1\) khi \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1=Ư\left(3\right)\) (1)
Mà x nguyên dương \(\Rightarrow x^2+x+1\ge1^2+1+1=3\) (2)
(1);(2) \(\Rightarrow x^2+x+1=3\)
\(\Rightarrow x=1\)
f(x) = x3 - 3x2 - 3x - 1 ⋮ x2 + x + 1
f(x) = x3 + x2 - 4x2 + x - 4x - 4 + 3 ⋮ x2 + x + 1
f(x) = ( x3 + x2 + x ) - ( 4x2 + 4x + 4 ) + 3 ⋮ x2 + x + 1
f(x) = x ( x2 + x + 1 ) - 4 ( x2 + x + 1 ) + 3 ⋮ x2 + x + 1
f(x) = ( x2 + x + 1 ) ( x - 4 ) + 3 ⋮ x2 + x + 1
Mà ( x2 + x + 1 ) ( x - 4 ) ⋮ x2 + x + 1
=> 3 ⋮ x2 + x + 1
=> x2 + x + 1 thuộc Ư(3) = { 1; 3; -1; -3 }
Tự thay vào rồi tìm x thôi bạn
VD :
x2 + x + 1 = 1
<=> x2 + x = 0
<=> x ( x + 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Xét tiếp 3 t/h còn lại nha bạn
TA CÓ:
\(\frac{x^3-3x^2-3x-1}{x^2+x+1}=x^3-\frac{3\left(x^2+x+1\right)+2}{x^2+x+1}\)
\(=x^3-3+\frac{2}{x^2+x+1}\)
Để thỏa mãn đề bài => \(x^2+x+1\inƯ\left(2\right)\)
\(\Rightarrow x^2+x+1\in\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x^2+x\in\left\{0;-2;1;-3\right\}\)
\(\Rightarrow x\left(x+1\right)\in\left\{0;-2;1;-3\right\}\)
đến đây làm nốt
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !