Cho tam giác ABC cân ở A,AB=AC=10 cm, BC=16cm.Trên đường cao AH lấy M sao cho AM=1/3 AH.Qua C kẻ đường thẳng song song với AH cắt BM tại N.
a, Tính các góc của tam giác ABC
b,Tính diện tích ABCN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta\)ABC cân tại A có :
AH là đường cao
\(\Rightarrow\)AH là đường trung tuyến
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow\)BH = HC =\(\dfrac{BC}{2}\)\(\dfrac{16}{2}=8\)
Xét \(\Delta\)AHB vuông tại H có:
\(\cos\)B=\(\dfrac{BH}{AB}=\dfrac{8}{10}\)=0.8
\(\Rightarrow\Lambda B\approx37\)độ
Ta có : góc B = góc C (Tam giác ABC cân tại A)
Mà góc B\(\approx37\)độ
\(\Rightarrow\)góc C\(\approx\)37 độ
b, Xét \(\Delta\)ABC có :
góc BAC+gócACB+góc ABC=180
\(\Rightarrow\)góc BAC=106 độ
Xét \(\Delta\)AHB vuông tại H có :
\(AB^2=AH^2+HB^2\Rightarrow AH=6\)
Ta có \(AI=\dfrac{1}{3}AH\Rightarrow HI=\dfrac{2}{3}AH\)
\(\Rightarrow\)HI=4cm
Xét tam giác BDC có
\(HI\) song song CD
\(\Rightarrow\dfrac{HI}{CD}=\dfrac{BH}{CH}=\dfrac{8}{16}=\dfrac{1}{2}\)
\(CD=8cm\)
Xét tứ giác AHCD có :
AH song somg CD
\(\Rightarrow\)AHCD là hình thang
Diện tích hình thang AHCD là :
\(\dfrac{1}{2}\left(6+8\right)\times8=56cm^2\)
Diện tích AHB là :
\(\dfrac{1}{2}\times6\times8=24cm^2\)
Diện tích tứ giác ABCD là
\(56+24=80cm^2\)
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHỤNG
suy ra: \(\Delta HBA~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)
\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)
\(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)
XÉT TAM GIÁC ABD VÀ TAM GIÁC AED
BA=EA ( GT)
\(\widehat{BAD}=\widehat{EAD}\)( GT)
AD-CẠNH CHUNG
=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)
=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2 góc tương ứng )
b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)
cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)
mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)
=> \(\widehat{KBD}=\widehat{CED}\)
XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :
\(\widehat{KBD}=\widehat{CED}\)(CMT)
BD=ED ( CMT)
\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )
=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)
=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)
c)
vì \(BC//KN\)(GT)
=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )
MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA KD VÀ NC
=> KD//NC
=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)
XÉT TAM GIÁC KDN VÀ TAM GIÁC CND
\(\widehat{KDN}=\widehat{CND}\)( CMT)
DN-CẠNH CHUNG
\(\widehat{CDN}=\widehat{DNK}\)(CMT)
=> TAM GIÁC KDN = TAM GIÁC CND
=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)
LẠI CÓ DC= DK ( CMT )
=> KN=DK
XÉT TAM GIÁC KDN:KN=DK
=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)
ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!