cho q;p là số nguyên tố biết 3<q<p và p-q=2 C/M q+p không chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì là số nguyên tố lớn hơn \(3\)và \(p-q=2\)nên \(p=3k+1,q=3k-1\), \(k>1\).
suy ra \(p+q=6k\).
Mà \(k\)phải là số chẵn do số nguyên tố lớn hơn \(3\)là số lẻ, do đó \(p+q\)chia hết cho \(12\).
Bài làm:
Ta có: Vì p,q là 2 số nguyên tố lớn hơn 3
=> p,q đều là 2 số lẻ
=> p + q chẵn với mọi số nguyên tố p,q
=> p + q chia hết cho 2
=> đpcm
Cho mk xin lỗi mk nhầm đề xíu p+q chia hết cho 12 chứ ko pk 2 ạ.
c>
GIẢI:
Q=3+32+33+...+32024
Q=3+32+(33+34+35)+(36+37+38)+...+(32022+32023+32024)
Q=12+33(1+3+32)+36(1+3+32)+...+32022(1+3+32)
Q=12+33.13+36.13+...+32022.13
Q=12+13(33+36+...+32022)
mà [13(33+36+...+32022)] chia hết cho 13
do đó Q:13 dư 12
vậy số dư khi cha Q cho 13 là 12
iải
q3−1=(q−1)(q2+q+1)q3−1=(q−1)(q2+q+1).
Vì (q−1,q2+q+1)=1(q−1,q2+q+1)=1 nên ta xét hai trường hợp:
1) q−1⋮pq−1⋮p
Kết hợp với điều kiện đầu đề bài, ta có (p−1)(q−1)⋮pq(p−1)(q−1)⋮pq
⇒pq−p−q+1⩾pq⇒pq−p−q+1⩾pq
⇒p+q⩽1⇒p+q⩽1 (vô lí)
⇒⇒ Loại trường hợp này
Trường hợp 2: q2+q+1⋮pq2+q+1⋮p
Kết hợp với điều kiện đầu của đề bài, ta có q2+q+1−p⋮pqq2+q+1−p⋮pq
Nên q2+q+1−p=
Thay x = 1 , -2 , 3 , -4 vào Q(x) tìm được (A;B;C;D) = \(\left(\frac{71}{35};-\frac{76}{7};-\frac{453}{35};\frac{867}{35}\right)\)
\(\Rightarrow Q\left(x\right)=x^4+\frac{71}{35}x^3-\frac{76}{7}x^2-\frac{453}{35}x+\frac{867}{35}\)
Từ đó tính được Q(40)