K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

a) =>n có dạng 3k,3k+1,3k+2          (k thuộc N)

-Nếu n có dạng 3k =>n chia hết cho 3 =>n(n+2)(n+7) chia hết cho 3

-Nếu n có dạng 3k+1=>n+2=3k+1+2=3k+3=3(k+1)

=>n+2 chia hết cho 3

=>n(n+2)(n+7) chia hết cho 3

-Nếu n có dạng 3k+2=>n+7=3k+2+7=3k+9=3(k+3)

=>n+7 chia hết cho 3

=>n(n+2)(n+7) chia hết cho 3

Vậy n(n+2)(n+7) chia hết cho 3

b)Vì 5 chia 4 dư 1 =>5n chia 4 dư 1

=>5n-1 chia hết cho 4

Vậy 5n-1 chia hết cho 4

c)Ta có:n2+n+2=n(n+1)+2

Vì n(n+1) là tích của 2 số liên tiếp => có tận cùng là 0,2 hoặc 6

=>n(n+1)+2 có tận cùng là 2,4 hoặc 8

Mà tận cùng là 2,4 hay 8 đều không chia hết cho 5

=>n(n+2)+2 không chia hết cho 5

=>n2+n+2 không chia hết cho 5

Vậy n2+n+2 không chia hết cho 5

-----------------The end------------------

28 tháng 10 2018

\(a,10⋮n\Rightarrow n\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5\pm10\right\}.\)

\(\Rightarrow n\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

\(b,12⋮n-1\Rightarrow n-1\inƯ\left(12\right)\left\{\pm1;\pm2;\pm3\pm4;\pm6;\pm12\right\}\)

28 tháng 10 2018

\(d,n+5⋮n+1\Rightarrow n+1+4⋮n+1.\)

mà \(n+1⋮n+1\Rightarrow4⋮n+1\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n+1 = 1 => n = 0

n + 1 = -1 => -2 

..... tương tự vs 2; -2 ; 4 ; -4 

\(e,n+7⋮n+2\Rightarrow n+2+5⋮n+2\)

mà \(n+2⋮n+2\Rightarrow5⋮n+2\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n+2 = 1 => n = -1

n + 2 = -1 => n = 3 

.... tương tự vs 5 và -5 

\(f,2n+5⋮2n+1\Rightarrow2n+1+4⋮2n+1\)

\(\Rightarrow2n+1⋮2n+1\Rightarrow4⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

......  tự lm 

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

20 tháng 11 2017

khai triển ra, ta dc: 
25^n+5^n-18^n-12^n (1) 
=(25^n-18^n)-(12^n-5^n) 
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7 
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)

H cx tương tự 

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong 
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7 

Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

22 tháng 12 2016

viết lại đề cho chuẩn 

nhìn mình chẳng hiểu n là số mũ hay là nhân, hay có gạch trên đầu...

22 tháng 12 2016

à 

n la so mu nha ban giai mik voi 

11 tháng 8 2017

a) Ta có :

\(n+5⋮n+2\)

\(n+2⋮n+2\)

\(\Leftrightarrow3⋮n+2\)

\(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)

Vậy ....

11 tháng 8 2017

b) Ta có :

\(4n+9⋮n+1\)

\(n+1⋮n+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)

\(\Leftrightarrow5⋮n+1\)

\(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)

Vậy ....