K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

\(A=\left(2x+\frac{1}{3}\right)^4-1\) . Có: \(\left(2x+\frac{1}{3}\right)\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

Dấu = xảy ra khi: \(2x+\frac{1}{3}=0\)

\(\Rightarrow2x=-\frac{1}{3}\)

\(\Rightarrow x=-\frac{1}{3}:2=-\frac{1}{6}\)

Vậy: \(Min_A=-1\) tại \(x=-\frac{1}{6}\)

4 tháng 8 2016

ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1

12 tháng 12 2016

(x-1)^2+2(x-3) tinh

16 tháng 12 2015

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

16 tháng 12 2015

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

21 tháng 6 2016

a)Ta thấy:

\(\left(2x+\frac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^2-\frac{5}{6}\ge0-\frac{5}{6}=-\frac{5}{6}\)

\(\Rightarrow A\ge-\frac{5}{6}\)

Dấu "=" <=>x=-1/6

Vậy MinA=-5/6<=>x=-1/6

b)Ta thấy:\(\hept{\begin{cases}\left|2x+3\right|\\\left|y-\frac{1}{2}\right|\end{cases}\ge}0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|\ge0\)

\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)

\(\Rightarrow B\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|2x-3\right|=0\\\left|y-\frac{1}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy...

a) ta có |1-2x|>=0

=>3.|1-2x|>=0

=>A>=0-5

A>=-5

dấu "=" xảy ra kh và chỉ khi 1-2x=0

2x=1

x=1/2

Vậy GTNN của A=-5 khi x=1/2

b)ta có -|2-3x|<=0

=>B<=3/4-0

B<=3/4

dấu "=" xảy ra khi và chỉ khi 2-3x=0

3x=2

x=2/3

Vậy GTLN của B=3/4 khi x=2/3

7 tháng 6 2016

fgfgfgf

7 tháng 6 2016

2x-5

=>x=3

5 tháng 6 2017

\(C=2x^2+y^2-2x\left(y-1\right)+3\Leftrightarrow2x^2+y^2-2xy+2x+3\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+2\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+2\ge2\)Vậy Min C = 2 khi \(\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

5 tháng 6 2017

\(C=2x^2+y^2-2x\left(y+1\right)+3\\ C=x^2-2xy+y^2+x^2-2x+1+2\\ C=\left(x-y\right)^2+\left(x-1\right)^2+2\)

vì: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) nên \(C\ge2\)

dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\\ x-y=0\Leftrightarrow1-y=0\Rightarrow y=1\)

vậy GTNN của C là 2 tại x=y=1

14 tháng 2 2016

ta có: |2x-5| > 0 với moi x

=>|2x-5|+3 > 0+3=3 với nọi x

do đó GTNN của P=3

dấu "=" xảy ra

<=>2x-5=0

<=>2x=5

<=>x=5/2

Vậy Pmin=3 <=>x=5/2