Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x+\frac{1}{3}\right)^4-1\) . Có: \(\left(2x+\frac{1}{3}\right)\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi: \(2x+\frac{1}{3}=0\)
\(\Rightarrow2x=-\frac{1}{3}\)
\(\Rightarrow x=-\frac{1}{3}:2=-\frac{1}{6}\)
Vậy: \(Min_A=-1\) tại \(x=-\frac{1}{6}\)
ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1
a)Ta thấy:
\(\left(2x+\frac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^2-\frac{5}{6}\ge0-\frac{5}{6}=-\frac{5}{6}\)
\(\Rightarrow A\ge-\frac{5}{6}\)
Dấu "=" <=>x=-1/6
Vậy MinA=-5/6<=>x=-1/6
b)Ta thấy:\(\hept{\begin{cases}\left|2x+3\right|\\\left|y-\frac{1}{2}\right|\end{cases}\ge}0\)
\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|\ge0\)
\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow B\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|2x-3\right|=0\\\left|y-\frac{1}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy...
a) ta có |1-2x|>=0
=>3.|1-2x|>=0
=>A>=0-5
A>=-5
dấu "=" xảy ra kh và chỉ khi 1-2x=0
2x=1
x=1/2
Vậy GTNN của A=-5 khi x=1/2
b)ta có -|2-3x|<=0
=>B<=3/4-0
B<=3/4
dấu "=" xảy ra khi và chỉ khi 2-3x=0
3x=2
x=2/3
Vậy GTLN của B=3/4 khi x=2/3
ta có: |2x-5| > 0 với moi x
=>|2x-5|+3 > 0+3=3 với nọi x
do đó GTNN của P=3
dấu "=" xảy ra
<=>2x-5=0
<=>2x=5
<=>x=5/2
Vậy Pmin=3 <=>x=5/2
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |