Trong hệ trục tọa độ Oxy cho 4 điểm A(1,1);B(2,-1);C(4,3);D(16,3)Hãyphân tích vecto AD theo 2 véctơ AB,AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\overrightarrow{AB}=\left(-1;-2\right)\)
\(\overrightarrow{AC}=\left(2;-1\right)\)
Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)
nên ΔABC vuông tại A
1,\(\overrightarrow{n}\)d=(2;-4)
d: 2(x+1)-4(y-1)=0⇔2x-4y+6=0
2) AM nhỏ nhất khi AM vuông góc với D
⇒\(\overrightarrow{n}\)AM=(4;2)
AM: 4(x+1)+2(y-1)=0⇔4x+2y+2=0
M=AM\(\cap\)D⇒Tọa độ điểm M là nghiệm của hệ:2x-4y=-1
4x+2y=-2
⇒M(-1/2;0)
vecto AB=(4;4)
vecto AC=(m-2;8)
Để A,B,C thẳng hàng thì 4/m-2=4/8
=>m-2=8
=>m=10
Bài toán cơ bản: Cho hai điểm A; B và một đường thẳng d cố định, tìm điểm C thuộc d sao cho chu vi tam giác ABC nhỏ nhất hay cũng chính là tìm C sao cho \(AC+BC\) nhỏ nhất.
Nhận thấy \(y_A\) và \(y_B\) cùng dấu nên A và B nằm cùng 1 phía đối với trục hoành, M là điểm bất kì thuộc Ox
Gọi D là điểm đối xứng A qua Ox \(\Rightarrow D\left(2;3\right)\) và \(MA=MD\)
Trong tam giác DBM, theo BĐT tam giác ta luôn có:
\(AM+BM=MD+BM\ge BD\Rightarrow BM+MD\) nhỏ nhất khi M, B, D thẳng hàng hay M là giao điểm của BD và Ox
\(\overrightarrow{BD}=\left(-1;7\right)\Rightarrow\) đường thẳng BD nhận \(\overrightarrow{n}=\left(7;1\right)\) là 1 vtpt
Phương trình BD: \(7\left(x-3\right)+1\left(y+4\right)=0\Rightarrow7x+y-17=0\)
Tọa độ của M là nghiệm: \(\left\{{}\begin{matrix}y=0\\7x+y-17=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{17}{7}\\y=0\end{matrix}\right.\)