K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Thôi để mình vẽ hình giùm bạn luôn nha!

Do mình sợ bạn vẽ không được nên mình mới vẽ giùm đấy!

Violympic toán 7

28 tháng 11 2018

Hình bạn tự vẽ nha!

C/m AH = CK:

Bài giải:

Xét △ABE có:

BA = BE (gt)

=> △ABE là △ cân

=> ∠BAE = ∠BEA

Ta có:

EK ⊥ AC

AB ⊥ AC

=> AB // EK

=> ∠BAE = ∠AEK (so le trong)

Xét △v AEH và △v AEK

AE chung

∠HEA = ∠AEK ( cùng bằng góc BAE)

=> △v AEH = △v AEK (cạnh huyền - góc nhọn)

=> AK = AH (cạnh tương ứng)

2 tháng 3 2016

a)  Từ A kẻ đường cao ( hoặc đường trung tuyến  , phân giác) cắt HK tại I 

Xét tam giác AIH và tam giác AIK có :

^A1 = ^A2  ( AI là đường cao của ^A)

AI cạnh chung 

suy ra : tam giác AIH = tam giác AIK( Cạnh góc vuông - Góc nhọn)

suy ra : AK = AH ( 2 cạnh tương ứng )

chú ý : ^ là góc , ngoài ra có thể chứng minh theo trường hợp khác như g-c-g

DD
24 tháng 1 2022

\(\Delta BAE\)cân tại \(B\)nên \(\widehat{BAE}=\widehat{BEA}\).

\(\widehat{KEA}=\widehat{BAE}\)(vì cùng phụ với góc \(\widehat{KAE}\))

Suy ra \(\widehat{KEA}=\widehat{BEA}\)

Xét tam giác \(AKE\)và tam giác \(AHE\)có: 

\(\widehat{AKE}=\widehat{AHE}=60^o\)

\(AE\)cạnh chung

\(\widehat{KEA}=\widehat{BEA}\)

Suy ra \(\Delta AKE=\Delta AHE\)(cạnh huyền - góc nhọn) 

\(\Rightarrow AK=AH\).

16 tháng 7 2016

Nối A và E lại ta có tam giác BAE cân tại B (vì BE=BA). Ta có góc BAE + góc CAE = góc ABC 
=90 độ. Mặt khác góc CAE + góc AEK = góc EKA = 90 độ => góc BAE = góc AEK. Mà góc BAE = góc BEA (tam giác BAE cân tại B) => góc AEK = góc BEA. Xét tam giác vuông AHE và AKE bằng nhau theo trường hợp cạnh góc vuông (AE chung) góc nhọn kề (góc AEK = góc BEA) => AK = AH (đpcm)

17 tháng 2 2017

A B C H E K

∆AKE vuông tại K => ∠AEK + ∠EAK = 900 => ∠EAK = 900 - ∠EAK (1)

∠BAE + ∠EAK = 900 => ∠BAE = 900 - ∠EAK (2)

Từ (1) ; (2) => ∠AEK = ∠BAE (3)

Vì AB = BE (gt) => ∆ ABE cân tại B => ∠BAE = ∠BEA (theo định lý) (4)

Từ (3) ; (4) => ∠AEK = ∠BEA (5)

Xét ∆AHE và ∆AKE có :

∠AHE = ∠AKE = 900 (gt)

Cạnh AE chung

∠AEK = ∠BEA ( theo (5) )

=> ∆AHE = ∆AKE (CH - GN)

=> AK = AH (cạnh T/Ư) 

Vậy AK = AH

18 tháng 3 2020

A B C H E K M O

kẻ EM _|_ AB 

xét tam giác EMB và tam giác AHB có : ^B chung

^EMB = ^AHB = 90

BE = BA (gt)

=> tam giác EMB = tam giác AHB(ch-gn)

=> AH = EM (đn)                (1)

EK _|_ AC (gt)

AB _|_ AC (gt)

=> EK // AB (đl)

=> ^KEA = ^EAM (slt)

xét tam giác AEK và tam giác EAM có : AE chung

^EKA = ^AME = 90

=> tam giác AEK = tam giác EAM (ch-gn)                        (2)

=> AK = EM và (1)

=> AK = AH     

tam giác EMB = tam giác AHB (cmt) => BM = BH (Đn)

BE = BA (Gt)

BH + HE = BE

BM + MA = BA

=> HE = MA

gọi EM cắt AH tại O; xét tam giác EOH và tam giác AOM có : ^EHO = ^AMO = 90

^OEH = ^OAM do tam giác EMB = tam giác AHB (cmt)

=> tam giác OEH = tam giác AOM (cgv-gnk)

=> EH = AM (Đn)

(2) => KE = AM

=> KE = EH