Cho 1 < x < y < 10. Chứng minh 1 / 10 < x / y < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Cho x>y>0 chứng minh rằng x^2>y^2
b, Chứng minh rằng: Nếu lal<1;lb-1l<10 và la-cl<10 thì lab-cl<20
Ta có: - \(x\ge0;y\ge0\)
\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|=x+y\)
- \(x\le0;y\le0\)
\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|=-x-y=-\left(x+y\right)\)
- \(x\ge0;y\le0\)
\(\Rightarrow\left|x+y\right|=x+y< x< \left|x\right|+\left|y\right|\)
- \(x\le0;y\ge0\)
\(\Rightarrow\left|x+y\right|=x+y>x>\left|x\right|+\left|y\right|\)
\(\Leftrightarrowđpcm\)
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm