Tìm $m$ để phương trình $m\ln (1-x)-\ln x=m$ có nghiệm $x \in (0;1)$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy phương trình (*) có a c < 0 ⇒ * có 2 nghiệm phân biệt, do đó ∀ m ∈ ℝ phương trình (*) luôn có 1 nghiệm thỏa mãn x > 0 .
Chọn D.
a.
\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)
\(\Rightarrow1-2\left(m-2\right)+m+10=0\)
\(\Rightarrow m=15\)
Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)
b.
Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)
\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)
Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)
Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)
c.
Pt có 2 nghiệm âm pb khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)
d.
\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\)
Không tồn tại m thỏa mãn
Lời giải:
Ta có:
\(m\ln (1-x)-\ln x=m\)
\(\Rightarrow m=\frac{\ln x}{\ln (1-x)-1}\)
Đặt \(f(x)=\frac{\ln x}{\ln (1-x)-1}\) \(\Rightarrow f'(x)=\frac{\frac{1}{x}(\ln (1-x)-1)+\frac{1}{1-x}.\ln x}{(\ln (1-x)-1)^2}\)
Với mọi \(x\in (0;1)\) thì \(\ln x< 0; \ln (1-x)< 0\).
\(\Rightarrow \frac{1}{x}(\ln (1-x)-1)+\frac{1}{1-x}.\ln x< 0\)
\(\Rightarrow f'(x)< 0, \forall x\in (0;1)\) hay hàm $f(x)$ nghịch biến trên $(0;1)$
-----------------
Lại có:
\(\lim _{x\to 0+}\frac{\ln x}{\ln (1-x)-1}=\lim_{x\to 0+}\frac{1}{\ln (1-x)-1}.\lim_{x\to +\infty}\ln x\)
\(-1.(-\infty)=+\infty\)
\(\lim_{x\to 1-}\frac{\ln x}{\ln (1-x)-1}=\lim _{x\to 1-}\ln x.\lim_{x\to 1-}\frac{1}{\ln (1-x)-1}=0.0=0\)
Do đó PT có nghiệm khi \(m\in (0;+\infty)\)