K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Ta có:

\(m\ln (1-x)-\ln x=m\)

\(\Rightarrow m=\frac{\ln x}{\ln (1-x)-1}\)

Đặt \(f(x)=\frac{\ln x}{\ln (1-x)-1}\) \(\Rightarrow f'(x)=\frac{\frac{1}{x}(\ln (1-x)-1)+\frac{1}{1-x}.\ln x}{(\ln (1-x)-1)^2}\)

Với mọi \(x\in (0;1)\) thì \(\ln x< 0; \ln (1-x)< 0\).

\(\Rightarrow \frac{1}{x}(\ln (1-x)-1)+\frac{1}{1-x}.\ln x< 0\)

\(\Rightarrow f'(x)< 0, \forall x\in (0;1)\) hay hàm $f(x)$ nghịch biến trên $(0;1)$

-----------------

Lại có:

\(\lim _{x\to 0+}\frac{\ln x}{\ln (1-x)-1}=\lim_{x\to 0+}\frac{1}{\ln (1-x)-1}.\lim_{x\to +\infty}\ln x\)

\(-1.(-\infty)=+\infty\)

\(\lim_{x\to 1-}\frac{\ln x}{\ln (1-x)-1}=\lim _{x\to 1-}\ln x.\lim_{x\to 1-}\frac{1}{\ln (1-x)-1}=0.0=0\)

Do đó PT có nghiệm khi \(m\in (0;+\infty)\)

23 tháng 4 2018

Chọn B

10 tháng 5 2017

26 tháng 12 2017

Chọn: C

14 tháng 12 2018

Nhận thấy phương trình (*) có a c < 0 ⇒ *  có 2 nghiệm phân biệt, do đó ∀ m ∈ ℝ  phương trình (*) luôn có 1 nghiệm thỏa mãn x > 0 .

Chọn D.

24 tháng 2 2019

24 tháng 11 2018

Đáp án D

NV
21 tháng 1 2024

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

21 tháng 1 2024

e cảm ơn ạ