Cho tam giác ABC cân tại A . Trên AB lấy M , trên AC lấy N sao cho BM=CN . Đường thẳng BC cắt MN tại I . Chứng minh :
a) I là trung điểm của MNƯ
b) Đường thẳng vuông góc MN tại I luôn đi qua 1 điểm cố định khi D thay đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ:
a.
Gọi ME là đường thẳng song song với AC cắt BC tại E.
Do \(\widehat{MEB}=\widehat{ACB}\)( đồng vị ) mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{MEB}=\widehat{ABC}\Rightarrow\Delta MEB\) cân tại M
\(\Rightarrow ME=MB\)
Xét \(\Delta BIM\) và \(\Delta CIN\) có:\(\widehat{EMI}=\widehat{INC};EM=CN;\widehat{MEI}=\widehat{ICN}\)(I là giai điểm của MN với BC)
\(\Rightarrow\Delta BIM=\Delta CIN\left(g.c.g\right)\Rightarrow IM=IN\)
b.
Gọi dao điểm của đường vuông góc kẻ từ B và tia phân giác góc A là K.Ta cần chứng minh \(KI\perp MN\)
Xét \(\Delta AKB\) và \(\Delta AKC\) có:\(AB=AC;\widehat{BAK}=\widehat{CAK};AK\) chung
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\Rightarrow BK=CK;\widehat{ABK}=\widehat{ACK}=90^0\)
Xét \(\Delta MBK\) và \(\Delta CNK\) có:\(BK=CK;MB=CN;\widehat{MBK}=\widehat{CNK}\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\Rightarrow KM=KN\)
\(\Rightarrow\)K thuộc đường trung trực của MN.\(\Rightarrow KI\perp MN\)
Mà K là điểm cố định\(\Rightarrow\)Đường trung trực của MN luôn đi qua điểm K cố định.
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)
a, Tam giác ABC có AB=AC (gt)
=> ∆ ABC cân tại A ( tính chất tam giác cân )
do đó góc B = góc C ( hai góc ở đáy )
Ta có : góc ABC = góc ECN ( hai góc đối đỉnh )
Xet ∆ vg BDM va ∆ vg CEN co :
BD=CE ( gt )
góc ABD = góc ECN ( cùng bằng góc ACB )
=> ∆ vuông góc BDM = ∆ vuông góc ECN ( cạnh góc vuông và góc nhọn kề cạnh ấy )
Do đó DM = EN ( hai cạnh tương ứng )
b) Ta có: MD vuông góc với BE
BE vuông góc với EN
=>MD//EN => góc DMI = góc INE(so le trong)
Xét ∆ MDI và ∆ IEN ta có:
MD=EN(vì ∆ MBD = ∆ CEN)
góc MDI = góc IEN(=90 độ)
góc DMI = góc INE(cmt)
=>∆ MDI = ∆ IEN(CGV-GN)
=>IM=IN(ctư)
=>đường thẳng BC cắt MN tại trung điểm I của MN
c)Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại K
H là chân đường vuông góc kẻ từ A xuống BC
Xét ∆ ABK và ∆ ACK có
AK là cạnh chung
AB=AC(cmt)
Góc BAK=góc KAC
suy ra tam giác ABK = tam giác ACK (c-g-c)
suy ra KB=KC nên K € AH đường trung trực của BC
Mặt khác :Từ ∆ DMB= ∆ ENC(câu a)
Ta có : BM=CN
BK=CK(cmt)
góc MBK=góc NCK=90 độ
Nên ∆ BMK = tam giác CNK(c-g-c)
suy ra MK=NK hay đường trung trực của MN luôn đi qua điểm K cố định (đpcm)
Do dài mình viết tắc nhìu. Bạn thông cảm
Bạn vào YouTube và đăng kí kênh nha. Kênh tên là CT CATTER
CHÚC BẠN HỌC TỐT!!!!!
Tk cho mình nha
Chúc bạn học tốt