K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

\(A=16^n-15n-1\)

\(A=16^n-1^n-15n\)

Có \(16^n-1^n⋮\left(16-1\right)=15\)

\(15n⋮15\)

\(\Rightarrow A⋮15\)

Công thức \(a^n-b^n⋮\left(a-b\right)\)

27 tháng 11 2018

Ta có:

16n chia 15 dư 1 vì:

16 chia 15 dư 1 Nên với bất kì số mũ nào thì cx chia 15 dư 1

=> 16n-1 chia hết cho 15 và 15n chia hết cho 15

nên: A chia hết cho 15

19 tháng 8 2017

\(A=16^n-15n-1=\left(16^n-1^n\right)-15n\)

Áp dụng hằng đẳng thức phụ :

\(a^k-b^k=\left(a-b\right)\left(a^{k-1}+a^{k-2}b+a^{k-3}b^2+.....+ab^{k-2}+b^{k-1}\right)\)

ta có : \(16^n-1^n=\left(16-1\right)\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)\)

\(=15\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)⋮15\)

Do đó \(16^n-1^n⋮15\)

Mà \(15n⋮15\) nên \(A=\left(16^n-1^n\right)-15n⋮15\)(đpcm)

10 tháng 5 2015

1.

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

đúng cái nhe bạn

10 tháng 5 2015

2.

Gọi d là ƯCLN (16n+3; 12n+2)

=> 16n+3 chia hết cho d; 12n+2 chia hết cho d

Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d

=> 48n+9 chia hết cho d; 48n+8 chia hết cho d

=> (48n+9)-(48n+8) chia hết cho d

=>            1           chia hết cho d

=> d \(\in\) {1; -1}

Vậy phân số \(\frac{16n+3}{12n+2}\) là phân số tối giản.

16 tháng 7 2017

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

12 tháng 2 2016

Gọi UCLN(16n+3,12n+2)=d

Ta có:16n+3 chia hết cho d      =>3(16n+3) chia hết cho d     =>48n+9 chia hết cho d

12n+2 chia hết cho d            =>4(12n+2) chia hết cho d        =>48n+8 chia hết cho d

=>(48n+9)-(48n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

             Vậy phân số 16n+3/12n+2 tối giản với mọi n là số tự nhiên

17 tháng 7 2016

1. + Nếu n chẵn => n(n + 3) chẵn

+ Nếu n lẻ => n + 3 chẵn => n(n + 3) chẵn

Chứng tỏ tích n(n + 3) luôn chẵn với mọi số tự nhiên n

2. a = 911 + 1

a = 910 . 9 + 1

a = (92)5 . 9 + 1

a = (...1)5 . 9 + 1

a = (...1) . 9 + 1

a = (...9) + 1

a = (...0) chia hết cho 2 và 5

Chứng tỏ số a = 911 + 1 chia hết cho cả 2 và 5

1) n(n+3)=n.n+n.3

nếu n là số lẻ thì n.n=số lẻ và n.3 = số lẻ;số lẻ + số lẻ = số chẵn

nếu n là số chẵn thì n.n=số chẵn và n.3 =số chẵn;số chẵn + số chẵn 

9 mũ 1 = 9

9 mũ 2 = 81

9 mũ 3 =729

9 mũ 4 = ...1

9 mũ 5 = ...9

=>9 mũ 11 =...9

...9+1=...0

những số có chữ số tận cùng là 0 sẽ chia hết cho cả 2 và 5

a: Gọi d=UCLN(4n+1;6n+1)

\(\Leftrightarrow3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>4n+1/6n+1 là phân số tối giản

b: Gọi a=UCLN(5n+3;3n+2)

\(\Leftrightarrow3\left(5n+3\right)-5\left(3n+2\right)⋮a\)

\(\Leftrightarrow-1⋮a\)

=>a=1

=>5n+3/3n+2 là phân số tối giản