Rút gọn phân thức sau :
x^5 + x -1 trên x^2 -x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{-\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}=\dfrac{-x-1}{x}\)
\(\dfrac{1-x^2}{x\left(x-1\right)}=\dfrac{\left(1-x\right)\left(1+x\right)}{x\left(x-1\right)}=-\dfrac{1+x}{x}\)
\(a,ĐK:x\ne1\\ b,A=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}=\dfrac{x+1}{x-1}\\ c,A=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\left(tm\right)\)
\(a,=x^2-3x-10-x^2+3x=-10\\ b,=\left(x+1\right)\left(x+1-x+1\right)=2\left(x+1\right)=2x+2\)
(x-1)(x-2)(x+2)-(x-3)\(^3\)
=(x-1)(x\(^2\)-4)-(x-3)\(^3\)
(xy-1)(xy-2)-(xy-2)\(^2\)
=(xy-2)(xy-1-xy+2)
=xy-2
`a)ĐK:9x^2-6x+1 ne 0<=>(3x-1)^2 ne 0<=>3x-1 ne 0<=>3x ne 1<=>x ne 1/3`
`b)x=-8`
`=>C=(3.64+8)/(9.64+6.8+1)`
`=8/25`
`c)C=(3x^2-x)/(9x^2-6x+1)`
`=(x(3x-1))/(3x-1)^2`
`=x/(3x-1)`
Mình thấy sai sai đáng lẽ cho rg trc rồi mới tính cho nó nhanh chứ :))
ĐKXĐ : \(\left\{{}\begin{matrix}1-x\ne0\\x+1\ne0\\1-2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
\(a,A=\left[\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right]:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow\left(\dfrac{-1\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{5-x}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{1-2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x-1+2x-2-5+x}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\dfrac{2x-8}{1-2x}\)
b, Để \(A>0\)
\(\Rightarrow\dfrac{2x-8}{1-2x}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-8>0\\1-2x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-8< 0\\1-2x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>4\\x< \dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 4\\x>\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
TH1 : Pt vô nghiệm
Vậy \(\left\{{}\begin{matrix}x< 4\\x>\dfrac{1}{2}\end{matrix}\right.\) thì A > 0
xem lại đề bài 1 chút nhé: nếu đề bài là x2 -12x+36 thì:
\(\frac{x^2-12x+36}{x^2-6x}=\frac{\left(x-6\right)^2}{x\left(x-6\right)}=\frac{x-6}{x}\)
Ta có: a)(x - 5).(2x +3) - (2x -1).(x +7) - (x -1).(x+2)
= 2x2 + 3x - 10x - 15 - 2x2 - 14x + x + 7 - x2 - 2x + x + 2
= -x2 - 21x - 6
\(\frac{x^5+x-1}{x^2-x+1}=\frac{x^5+x^2-x^2+x-1}{x^2-x+1}\)
\(=\frac{x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)}{x^2-x+1}\)
\(=\frac{\left(x^2-x+1\right)\left(x^3+x^2-1\right)}{x^2-x+1}=x^3+x^2-1\)