\(\frac{3}{8}+\frac{3}{8}+\frac{3}{24}+\frac{3}{48}+...+\frac{3}{1848}\)
Tính nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}...1\frac{1}{80}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{81}{80}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{9.9}{8.10}\)
\(=\frac{2.3.4...9}{1.2.3...8}.\frac{2.3.4...9}{3.4.5...10}\)
\(=9.\frac{2}{10}\)
\(=9.\frac{1}{5}=\frac{9}{5}\)
1 và 1 phần 3 . 1 và 1 phần 8 . 1 và 1 phần 15 . 1 và 1 phần 24 . 1 và 1 phần 35 . 1 và 1 phần 48 . 1 và 1 phần 63 . 1 và 1 phần 80
= 4 phần 3 . 9 phần 8 . 16 phần 15 . 25 phần 24 . 36 phần 35 . 49 phần 48 . 64 phần 63 . 81 phần 80
= 3 phần 2 . 10 phần 9 . 15 phần 14 . 36 phần 35
= 5 phần 3 . 54 phần 49
= 90 phần 49
cái a bằng 1962
cái b bằng 127/192
à quên mình chưa rút gọn phân số đấy đâu bạn ạ
ban rút gọn phân số đấy hộ mình nha
Ta có:
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}.\frac{48}{49}=\frac{1.3}{2.2}+\frac{2.4}{3.3}+\frac{3.5}{4.4}+\frac{4.6}{5.5}+\frac{5.7}{6.6}+\frac{6.8}{7.7}=\frac{1.2.3.4.5.6}{2.3.4.5.6.7}.\frac{3.4.5.6.7.8}{2.3.4.5.6.7}=\frac{1}{7}.\frac{8}{2}=\frac{4}{7}\)
\(E=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}...\frac{9^2}{8.10}=\frac{\left(2.3.4...9\right)^2}{1.2.\left(3.4...8\right)^2.9.10}=\frac{2^2.9^2}{1.2.9.10}=\frac{18}{10}=\frac{9}{5}\)
thật ra mình cũng biết cách làm rồi nhưng để chắc chắn ý mà
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
\(=3.\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(=3.A\)với \(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(\Rightarrow2^2A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)\)
\(\Rightarrow2^2A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(\Rightarrow4A-A=2-\frac{1}{2^9}\)
\(\Rightarrow3A=2-\frac{1}{512}=\frac{1023}{512}\Rightarrow A=\frac{1023}{512}:3\)
\(\Rightarrow\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}=3.\left(\frac{1023}{512}:3\right)=\frac{1023}{512}\)
mình biết đáp án là : \(\frac{9}{16}\)thôi,còn cách giải thì mình không chắc chắn nên không viết ra
\(\frac{3.2.4.3.5.4.6.5.7.6.8.7.9}{4.3.3.4.4.5.5.6.6.7.7.8.8}\)= \(\frac{9}{16}\)