7/2+7/6+7/12+7/20+7/30+7/42+7/56+7/72+7/90+7/110
đây là dạng tính nhanh nào?
làm thế nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{2}+\frac{7}{6}+\frac{7}{12}+\frac{7}{20}+\frac{7}{30}+\frac{7}{42}+\frac{7}{56}+\frac{7}{72}+\frac{7}{90}\)\(\frac{7}{90}\)
=\(\frac{7}{2+6+12+20+30+42+56+72+90}\)
=\(\frac{63}{10}\)
=6.3
\(1,A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\\ 2A=\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{99}-\dfrac{1}{103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{103}=\dfrac{100}{309}\\ A=\dfrac{100}{309}\cdot\dfrac{1}{2}=\dfrac{50}{309}\)
\(2,A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\\ A=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\right)\\ A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ A=7\left(1-\dfrac{1}{10}\right)=7\cdot\dfrac{9}{10}=\dfrac{63}{10}\)
\(=1+1+1+1+1+1+1+1+1+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=9+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
=9+9/10=99/10
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(=\frac{1+2}{1.2}-\frac{2+3}{2.3}+\frac{3+4}{3.4}-\frac{4+5}{4.5}+\frac{5+6}{5.6}-\frac{6+7}{6.7}+\frac{7+8}{7.8}-\frac{8+9}{8.9}+\frac{9+10}{9.10}\)
\(=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-...-\frac{1}{8}-\frac{1}{9}+\frac{1}{9}+\frac{1}{10}\)
\(=\frac{11}{10}\)
Đặt biểu thức trên là A
\(\Rightarrow A=7x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\right)\)
Đặt biểu thức trong ngoặc là B
\(\Rightarrow B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{9x10}+\frac{1}{10x11}\)
Đây là dạng tính tổng các phân số mà mỗi phân số có:
-Tử số là hiệu của hai thừa số ở mẫu
-Mẫu số của phân số liền sau là tích của hai thừa số mà thừa số thứ nhất là thừa số thứ hai ở mẫu của phân số liền trước
\(B=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{10-9}{9x10}+\frac{11-10}{10x11}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(B=1-\frac{1}{11}=\frac{10}{11}\Rightarrow A=\frac{70}{11}\)