Tính
\(\dfrac{2^8.52+2^{10}.65}{2^8.104}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2^8.52+2^{10}.65}{2^8.104}\)
\(=\dfrac{2^8.2^2.13+2^{10}.13.5}{2^8.2^3.13}\)
\(=\dfrac{2^{10}.13+2^{10}.13.5}{2^{11}.13}\)
\(=\dfrac{2^{10}.13.\left(5+1\right)}{2^{11}.13}\)
\(=\dfrac{2^{10}.13.6}{2^{11}.13}\)
\(=\dfrac{2^{11}.13.3}{2^{11}.13}=3\)
A=\(\dfrac{2^{10}\left(13+65\right)}{2^8.104}\)
=\(\dfrac{2.78}{104}\)=\(\dfrac{78}{52}\)=\(\dfrac{39}{26}\)
Sửa đề: \(C=1+3^1+3^2+...+3^{100}\)
b) Ta có: \(C=1+3^1+3^2+...+3^{100}\)
\(\Leftrightarrow3\cdot C=3+3^2+...+3^{101}\)
\(\Leftrightarrow C-3\cdot C=1+3+3^2+...+3^{100}-3-3^2-...-3^{100}-3^{101}\)
\(\Leftrightarrow-2\cdot C=1-3^{101}\)
hay \(C=\dfrac{3^{101}-1}{2}\)
b) Ta có: C=1+31+32+...+3100C=1+31+32+...+3100
⇔3⋅C=3+32+...+3101⇔3⋅C=3+32+...+3101
⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101
⇔−2⋅C=1−3101
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
Xét : 210 . 13 + 210. 65 = 210 . ( 13 + 65 ) = 210 . 78
28 . 104 = 28 . ( 22 . 26 ) = 28. 22. 26 = 210.26
có : \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)= \(\frac{2^{10}.78}{2^{10}.26}\)= \(\frac{78}{26}\)= 3
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.\left(13+65\right)}{2^8.104}=\frac{2^{10}.78}{2^8.104}\)
\(=\frac{2^2.39}{52}=\frac{2^2.39}{2^2.13}\)
\(=\frac{39}{13}\)
\(=3\)
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\frac{2^{10}.\left(13+65\right)}{2^8.104}\)
\(=\frac{2^{10}.78}{2^8.104}\)
\(=\frac{2^8.2^2.78}{2^8.104}\)
\(=\frac{2^8.4.78}{2^8.104}\)
\(=\frac{2^8.312}{2^8.104}\)
\(=\frac{2^8.3.104}{2^8.104}=3\)
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(=\frac{2^{10}.\left(13+65\right)}{2^8.104}\)
\(=\frac{2^{10}.78}{2^8.104}\)
\(=\frac{2^{10}.2.39}{2^8.2^3.13}\)
\(=\frac{2^{11}.39}{2^{11}.13}=3\)
\(\frac{2^{10}.13.2^{10}.65}{2^8.104}=\frac{1024.13.1024.65}{256.104}\)
\(=\frac{1024.13.65}{256.104}=\frac{865280}{26642}\)
\(=32,5\)
\(\frac{2^{10}.13.2^{10}.65}{2^8.104}=\frac{2^{20}.13.65}{2^8.2^3.13}\)
\(=\frac{2^{20}.13.65}{2^{11}.13}\)
\(=2^9.65\)
\(=512.65\)
\(=33280\)
\(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\frac{2^{10}\cdot\left(13+65\right)}{2^8\cdot104}=\frac{2^{10}\cdot78}{2^8\cdot104}=\frac{2^{10}\cdot2\cdot3\cdot13}{2^8\cdot2^2\cdot13}=\frac{2^{11}\cdot3\cdot13}{2^{10}\cdot13}=2\cdot3=6\)