Tính:
\(A=\frac{72^3.5\text{4}^2}{108^{\text{4}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5 :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)
\(A=1-\frac{1}{50}\)
từ trên ta có : \(1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)
A) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{35}{7}=5\)
=> x = 5.3 = 15.
=> y = 5.4 = 20.
B) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x+y}{6+4}=\dfrac{50}{10}=5\)
=> x = 5.3 = 15.
=> y = 5.4 = 20.
C) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{y-x}{4-3}=\dfrac{3}{1}=3\)
=> x = 3.3 = 9.
=> y = 3.4 = 12.
D) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x.y}{3.4}=\dfrac{108}{12}=9\)
=> x = 9.3 = 27.
=> y = 9.4 = 36.
Chúc bạn học tốt :D
a: \(\left(0.5\right)^3\cdot2^3=1\)
b: \(\left(0.25\right)^2\cdot16=1\)
c: \(\left(\dfrac{3}{5}\right)^3:\left(-\dfrac{27}{1000}\right)=\dfrac{3^3}{5^3}\cdot\dfrac{-1000}{27}=\dfrac{-1000}{125}=-8\)
\(A=\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=\frac{2^3}{1}=8\)
\(=\frac{9^3.8^3.9^2.6^2}{9^4.3^4.4^4}=\frac{9^5.4^3.2^3.2^2.3^2}{9^4.4^4.3^4}\)\(=\frac{9.2^3.2^2}{4.3^2}=2^3=8\)
\(=\frac{9^3.8^3.9^2.6^2}{9^4.12^4}=\frac{9.4^3.2^3.3^2.2^2}{3^4.4^4}=\frac{9.2^3.2^2}{3^2.4}\) =23=8
\(A=\frac{72^3.54^2}{108^4=}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=2^3=8\)