chứng minh rằng các cặp số sau là số tối giản
a, 3n+4 và n+1
b, 2n+5 và 14n+7
c, 21n+4 và 14n+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d là ước chung lớn nhất của 3n+4 và n+1
=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)
=>\(3n+4-3n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>n+1 và 3n+4 là hai số nguyên tố cùng nhau
b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7
=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)
=>\(35n+50-35n-49⋮d\)
=>\(1⋮d\)
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau
tham khaor vaof link : https://hoc24.vn/cau-hoi/bai-34-chung-minh-cac-phan-so-sau-la-cac-phan-so-toi-gian-a-a-12n130n2-b-b-14n1721n25.1058785524789
a: Gọi d=ƯCLN(6n+5;2n+1)
=>6n+5-3(2n+1) chia hết cho d
=>2 chia hết cho d
mà 2n+1 lẻ
nên d=1
=>ĐPCM
b: Gọi d=ƯCLN(14n+3;21n+4)
=>42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
d: Gọi d=ƯCLN(3n+7;n+2)
=>3n+7 chia hết cho d và n+2 chia hết cho d
=>3n+7-3n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 )
Theo bài ra ta có : 7n + 10 chia hết cho d
=> 5 ( 7n + 10 ) chia hết cho d
=> 35n + 50 chia hết cho d ( 1 )
5n + 7 chia hết cho d
=>7 ( 5n + 7 ) chia hết cho d
=> 35n + 49 chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 1 chia hết cho d
Vậy .....
b ) 14n + 3 và 21n + 4
Gọi d là ƯC ( 14n + 3 ; 21n + 4 )
Ta có : 14n + 3 chia hết cho d
=> 3 ( 14n + 3 ) chia hết cho d
=> 42n + 9 chia hết cho d ( 1 )
21n + 4 chia hết cho d
=> 2 ( 21n + 4 ) chia hết cho d
=> 42n + 8 chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d
=> 1 chia hết cho d
Vậy ........
a. gọi a là ƯC(2n+1,2n+3)
suy ra 2n+1 chia hết cho d , 2n+3 chia hết cho a
vậy ( 2n+1) - ( 2n +3) chia hết cho d suy ra 2 chia hết cho a
a thuộc tập hợp 1 và 2 mà a khác 2 nên a = 1
suy ra 2n+ 1 , 2n+3 là hai số nguyên tố cùng nhau
b. gọi a là ước chung của 14n+3 , 21n+4
ta có : 14n+3 chia hết cho a , 21n+4 chia hết cho a
vậy 14n+3 chia hết cho a suy ra 21 (14n+3) chia het cho a
21n+4 chia hết cho a suy ra 14 (21n+4) chia het cho a
do đó 14(21n+4 ) - 21(14n+3) chia het cho a suy ra 1 chia het co a nen a= 1
vay 14n+3 va 21n+4 là 2 số nguyên tố cùng nhau
chac chan dung tick cho minh nhe
mik ghét nhất là mấy bài toán chứng minh
ai có ý nghĩ giống mik thì tick nha
làm mẫu một bài nha :))
gợi UCLN(3n+4,n+1) =d. ta có:
\(\hept{\begin{cases}3n+4⋮d\\n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+4⋮d\\3n+3⋮d\end{cases}}}\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vì (3n+4,n+1) =1 => \(\frac{3n+4}{n+1}\)là phân số tối giản
chữa đề : chứng minh rằng các cặp số sau là số nguyên tố cùng nhau