cho A = 20122013 . tìm chữ số tận cùng của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5)A=2012^2013
A=2012^2012.2012
A=2012^(4.503).2012
A=(...6).2012=....72 (các số tự nhiên có chữ số tận cùng bằng 2,4,8 khi nâng lên lũy thừa 4n (n khác 0) đều có tận cùng là 6)
Vậy 2 chữ số tận cùng của A là 72
4)
20122013=20122012.2012=(20124)503.2012=(..1)503.2012=(....1).2012=....2
=>chữ số tận cùng của 20122013 là 2
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A
Ta có: \(44\equiv2\left(mod7\right)\Rightarrow44^{2005}\equiv2^{2005}\left(mod7\right)\) (*)
Lại có: \(2^3\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}.2\equiv2\left(mod7\right)\)
\(\Leftrightarrow2^{2005}\equiv2\left(mod7\right)\)(**)
Từ (*) và (**) suy ra \(44^{2005}\equiv2\left(mod7\right)\)
Vậy \(44^{2005}\)chia 7 dư 2
ta có số mũ 2013 = 4.503 + 1
vì : \(2012\equiv2\) ( mod 10 ) nên \(2012^4\equiv6\) ( mod 10 )
\(\Rightarrow\left(2012^4\right)^{503}\equiv6\) ( mod 10 ) hay \(2012^{2012}\equiv6\) ( mod 10 )
\(\Rightarrow2012^{2013}=2012^{2012}.2012\equiv6.2\) ( mod 10 ) hay \(2012^{2013}\equiv2\) ( mod 10 )
Vậy A có chữ số tận cùng là 2
A = 20122013
A = 20122012 . 2012
A = 20124.503 .2012
A = ( .. 6 ) . 2012 = 2
Vậy chữ số tận cùng của A = 2