K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

A=19442005=19442000.19445≡9376.8224≡8224(mod10000) nên A có 4 chữ số tận cùng là 8224 nên 2 chữ số tận cùng của A là 24

17 tháng 1 2019

Ta co:A=1944^2005=(1944^2004)*1944=[(1944^2)^1002]*1944

=[(...6)^1002]*1994=(...6)*1994=...4

Vay a co chu so tan cung la 4

CHUC BAN HOC TOT!!!!!!!!!!!!!!!!!!!!

26 tháng 6 2017

câu a: số tận cùng là 1

câu b: số tận cùng là 2

7 tháng 1 2018

a, B = (1+2)+(2^2+2^3+2^4)+(2^5+2^6+2^7)+.....+(2^2003+2^2004+2^2005)

      = 3+2^2.(1+2+2^2)+2^5.(1+2+2^2)+.....+2^2003.(1+2+2^2)

      = 3+2^2.7+2^5.7+.....+2^2003.7

      = 3+7.(2^2+2^5+.....+2^2003) chia 7 dư 3

b, 2B = 2+2^2+....+2^2006

B=2B-B=(2+2^2+....+2^2006)-(1+2+2^2+.....+2^2005) = 2^2006-1

Xét : 2^2006 = 2^2.2^2004 = 4.(2^4)^501 = 4.(16)^501 = 4 .  ....6 = ....4 có tận cùng là 4

=> B có tận cùng là 4-1=3

Tk mk nha

16 tháng 10 2017

a, \(A=1+2+2^2+2^3+...+2^{2005}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)

\(2A=2+2^2+2^3+...+2^{2006}\)

\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2^{2006}-1\)

c, Số số hạng của A là : (2005 -  1) + 1 = 2005 (số hạng) 

Nếu nhóm 3 số hạng vào 1 nhóm thì có :  2005 : 3 = 668 nhóm dư 1 số hạng 

Ta có : 

\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)

\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)

\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)

\(\Rightarrow A\div7\) dư 3 

d, Làm tương tự c

25 tháng 3 2017

a) Là 6

a, Ta có : 2016 chia hết cho 4 mà lũy thừa

=> \(1944^{2016}\)có chữ số tận cùng giông với : \(4^{2016}=............6\)( vì lũy thừ có cơ số 4 và số mũ la số chia hết cho 4 thì chữ số tận cùng của lũy thừa đó luôn là 6 )

Vậy chữ số tận cùng của \(1944^{2016}\)là 6

b,  Ta có \(1944^{2016}\)chia hết cho 4 ( Vì 1944 chia hết cho 4 ) và \(1944^{2016}=324^{2016}.6^{2016}\)

     mà :    324 đồng dư với  -1 (mod 25 )

           => \(324^{2016}\)đồng dư với  \(\left(-1\right)^{2016}\)đồng dư với 1 ( mod 25 )

     và : \(6^{2016}\)\(=6^{2015}.6\)

 Ta có : \(6^{2015}=\left(6^5\right)^{403}\)\(=7776^{403}\)

          Có : 7776 đồng dư với 1 ( mod 25 )

          => \(7776^{403}\)đồng dư với \(1^{403}\)đồng dư với 1 ( mod 25 )

        Có : 6 đồng dư với 6 ( mod 25 )

=> \(1944^{2016}\)đồng dư với \(324^{2016}.6^{2015}.6\)đồng dư với 1.1.6 đồng dư với 6 ( mod 25 )

=> \(1944^{2016}\)chia cho 25 dư 6

=>\(1944^{2016}\)= 25.k + 6 chia hết cho 4

Ta có : 25.k + 6 chia hết cho 4

           24.k + k + 2 + 4 chia hết cho 4

     =>  k + 2 chia hết cho 4

    => k = 4.m - 2

   Thay k = 4.m - 2 ta có :

   \(1944^{2016}=\) 25. (4.m - 2 ) + 6

    \(1944^{2016}=\)100 .m - 50 + 6 

 \(1944^{2016}=\)100.m - 44 = .........00 - 44

\(1944^{2016}=\)...........56

Vậy hai chữ số tận cùng của \(1944^{2016}=\)56

Ai thấy mik làm đúng thì ủng hộ nha !!!

Cảm ơn các bạn nhiều 

3 tháng 12 2015

1a) 4^21=(4^2)^10.4=(....6)^10.4=(......6).4=(.......4)

b) 3^100=(3^4)^25=(.....1)^25=(.....1)